Algorithms for Monitoring Real-Time Properties

  • David Basin
  • Felix Klaedtke
  • Eugen Zălinescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7186)


We present and analyze monitoring algorithms for a safety fragment of metric temporal logics, which differ in their underlying time model. The time models considered have either dense or discrete time domains and are point-based or interval-based. Our analysis reveals differences and similarities between the time models for monitoring and highlights key concepts underlying our and prior monitoring algorithms.


Temporal Logic Time Model Future Operator State Proposition Representation Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.: Logics and Models of Real Time: A Survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-order temporal logic. In: SACMAT 2010, pp. 23–33 (2010)Google Scholar
  4. 4.
    Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order temporal properties. In: FSTTCS 2008, pp. 49–60 (2008)Google Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of Real-Time Properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P.: Model-checking times temporal logics. In: 5th Workshop on Methods for Modalities. ENTCS, vol. 231, pp. 323–341 (2009)Google Scholar
  7. 7.
    Drusinsky, D.: On-line monitoring of metric temporal logic with time-series constraints using alternating finite automata. J. UCS 12(5), 482–498 (2006)MathSciNetGoogle Scholar
  8. 8.
    Fürer, M.: Faster integer multiplication. In: STOC 2007, pp. 55–67 (2007)Google Scholar
  9. 9.
    Furia, C., Rossi, M.: A theory of sampling for continuous-time metric temporal logic. ACM Trans. Comput. Log. 12(1) (2010)Google Scholar
  10. 10.
    Goodloe, A., Pike, L.: Monitoring distributed real-time systems: A survey and future directions. Tech. rep. CR-2010-216724, NASA Langley Research Center (2010)Google Scholar
  11. 11.
    Henzinger, T., Manna, Z., Pnueli, A.: What Good are Digital Clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  12. 12.
    Kristoffersen, K., Pedersen, C., Andersen, H.: Runtime verification of timed LTL using disjunctive normalized equation systems. In: RV 2003. ENTCS, vol. 89, pp. 210–225 (2003)Google Scholar
  13. 13.
    Maler, O., Nickovic, D.: Monitoring Temporal Properties of Continuous Signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ničković, D.: Checking Timed and Hybrid Properties: Theory and Applications. PhD thesis, Université Joseph Fourier, Grenoble, France (2008)Google Scholar
  15. 15.
    Nickovic, D., Maler, O.: AMT: A Property-Based Monitoring Tool for Analog Systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Ouaknine, J., Worrell, J.: Some Recent Results in Metric Temporal Logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A Hard Real-Time Runtime Monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Raskin, J.-F., Schobbens, P.-Y.: Real-time Logics: Fictitious Clock as an Abstraction of Dense Time. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 165–182. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3-4), 281–292 (1971)zbMATHCrossRefGoogle Scholar
  20. 20.
    Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. In: RV 2004. ENTCS, vol. 113, pp. 145–162 (2005)Google Scholar
  21. 21.
    Toman, D.: Point vs. interval-based query languages for temporal databases. In: PODS 1996, pp. 58–67 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Basin
    • 1
  • Felix Klaedtke
    • 1
  • Eugen Zălinescu
    • 1
  1. 1.Computer Science DepartmentETH ZurichSwitzerland

Personalised recommendations