CoMA: Conformance Monitoring of Java Programs by Abstract State Machines

  • Paolo Arcaini
  • Angelo Gargantini
  • Elvinia Riccobene
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7186)


We present CoMA (Conformance Monitoring by Abstract State Machines), a specification-based approach and its supporting tool for runtime monitoring of Java software. Based on the information obtained from code execution and model simulation, the conformance of the concrete implementation is checked with respect to its formal specification given in terms of Abstract State Machines. At runtime, undesirable behaviors of the implementation, as well as incorrect specifications of the system behavior are recognized.

The technique we propose makes use of Java annotations, which link the concrete implementation to its formal model, without enriching the code with behavioral information contained only in the abstract specification. The approach fosters the separation between implementation and specification, and allows the reuse of specifications for other purposes (formal verification, simulation, model-based testing, etc.).


Model Check Temporal Logic Java Program Java Code Java Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to AspectJ. In: Johnson, R.E., Gabriel, R.P. (eds.) OOPSLA, pp. 345–364 (2005)Google Scholar
  2. 2.
    Arcaini, P., Gargantini, A., Riccobene, E.: Runtime monitoring of Java programs by Abstract State Machines. TR 131, DTI Dept., Univ. of Milan (2010)Google Scholar
  3. 3.
    Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for engineering a toolset for a formal method. Softw., Pract. Exper. 41(2), 155–166 (2011)CrossRefGoogle Scholar
  4. 4.
    Barnett, M., Schulte, W.: Runtime verification of.NET contracts. The Journal of Systems and Software 65(3), 199–208 (2003)CrossRefGoogle Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Transactions on Software and Methodology (TOSEM) 20 (2011)Google Scholar
  6. 6.
    Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  7. 7.
    Chen, F., D’Amorim, M., Roşu, G.: A Formal Monitoring-Based Framework for Software Development and Analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Chen, F., Roşu, G.: Mop: an efficient and generic runtime verification framework. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object Oriented Programming Systems and Applications - OOPSLA 2007, Montreal, Quebec, Canada, page 569 (2007)Google Scholar
  9. 9.
    Colin, S., Mariani, L.: 18 Run-Time Verification. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Darvas, A., Leino, K.R.M.: Practical Reasoning About Invocations and Implementations of Pure Methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 336–351. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-fault monitoring tools. IEEE Transactions on Software Engineering 30(12), 859–872 (2004)CrossRefGoogle Scholar
  12. 12.
    Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation engine for Abstract State Machines. Journal of Universal Computer Science (JUCS) 14(12), 1949–1983 (2008)Google Scholar
  13. 13.
    Havelund, K., Roşu, G.: Efficient monitoring of safety properties. Int. J. Softw. Tools Technol. Transf. 6, 158–173 (2004)CrossRefGoogle Scholar
  14. 14.
    Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall International, Englewood Cliffs (1998)Google Scholar
  15. 15.
    Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME Interface Specification Language and Runtime Monitoring Tool. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 93–100. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface specification language for Java. SIGSOFT Softw. Eng. Notes 31, 1–38 (2006)CrossRefGoogle Scholar
  17. 17.
    Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based on formal specifications. In: Parallel and Distributed Processing Techniques and Applications, pp. 279–287 (1999)Google Scholar
  18. 18.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic and Algebraic Programming 78(5), 293–303 (2009)zbMATHCrossRefGoogle Scholar
  19. 19.
    Liang, H., Dong, J., Sun, J., Wong, W.: Software monitoring through formal specification animation. Innovations in Systems and Soft. Eng. 5, 231–241 (2009)CrossRefGoogle Scholar
  20. 20.
    Weisstein, E.W.: Knight’s tour. from MathWorld–A Wolfram Web ResourceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo Arcaini
    • 1
  • Angelo Gargantini
    • 2
  • Elvinia Riccobene
    • 1
  1. 1.Dip. di Tecnologie dell’InformazioneUniversità degli Studi di MilanoItaly
  2. 2.Dip. di Ing. dell’Informazione e Metodi MatematiciUniversità di BergamoItaly

Personalised recommendations