Advertisement

Efficient Simulations of the Transport Properties of Spin Field-Effect Transistors Built on Silicon Fins

  • D. Osintsev
  • A. Makarov
  • V. Sverdlov
  • S. Selberherr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

Significant progress in integrated circuits performance has been supported by the miniaturization of the transistor feature size. With transistor scalability gradually slowing down new concepts have to be introduced in order to maintain the computational speed increase at reduced power consumption for future micro- and nanoelectronic devices. A promising alternative to the charge degree of freedom currently used in MOSFET switches is to take into account the spin degree of freedom. We computationally investigate transport properties of ballistic spin field-effect transistors (SpinFETs). These simulations require a significant amount of computational resources. To achieve the best performance of calculations we parallelize the code for a shared-memory multi-CPU system. As the result of the optimization of the whole model a significant speed-up in calculations is achieved. We demonstrate that the [100] oriented silicon fins are best suited for practical realizations of a SpinFET.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Applied Physics Letters 56(7), 665–667 (1990)CrossRefGoogle Scholar
  2. 2.
    Giglberger, S., Golub, L.E., Bel’kov, V.V., Danilov, S.N., Schuh, D., Gerl, C., Rohlfing, F., Stahl, J., Wegscheider, W., Weiss, D., Prettl, W., Ganichev, S.D.: Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents. Phys. Rev. B 75(3), 35327 (2007)CrossRefGoogle Scholar
  3. 3.
    Nestoklon, M.O., Ivchenko, E.L., Jancu, J.-M., Voisin, P.: Electric field effect on electron spin splitting in SiGe/Si quantum wells. Phys. Rev. B 77(15), 155328 (2008)CrossRefGoogle Scholar
  4. 4.
    Prada, M., Klimeck, G., Joynt, R.: Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures. New J. Phys. 13, 13009 (2011)CrossRefGoogle Scholar
  5. 5.
    Wilamowski, Z., Jantsch, W.: Suppression of spin relaxation of conduction electrons by cyclotron motion. Phys. Rev. B 69(3), 35328 (2004)CrossRefGoogle Scholar
  6. 6.
    Cahay, M., Bandyopadhyay, S.: Phase-coherent quantum mechanical spin transport in a weakly disordered quasi-one-dimensional channel. Phys. Rev. B 69(4), 45303 (2004)CrossRefGoogle Scholar
  7. 7.
    Jiang, K.M., Zhang, R., Yang, J., Yue, C.-X., Sun, Z.-Y.: Tunneling magnetoresistance properties in ballistic spin field-effect transistors. IEEE T-ED 57, 2005 (2010)CrossRefGoogle Scholar
  8. 8.
    GNU Scientific Library, http://www.gnu.org/s/gsl/
  9. 9.
    Karner, M., Gehring, A., Holzer, S., Pourfath, M., Wagner, M., Gös, W., Vasicek, M., Baumgartner, O., Kernstock, C., Schnass, K., Zeiler, G., Grasser, T., Kosina, H., Selberherr, S.: A multi-purpose Schrödinger-Poisson solver for TCAD applications. Journal of Computational Electronics 6, 179–182 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Osintsev
    • 1
  • A. Makarov
    • 1
  • V. Sverdlov
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations