Advertisement

Optimization-Based Modeling with Applications to Transport: Part 2. The Optimization Algorithm

  • Joseph Young
  • Denis Ridzal
  • Pavel Bochev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

This paper is the second of three related articles that develop and demonstrate a new optimization-based framework for computational modeling. The framework uses optimization and control ideas to assemble and decompose multiphysics operators and to preserve their fundamental physical properties in the discretization process. One application of the framework is in the formulation of robust algorithms for optimization-based transport (OBT). Based on the theoretical foundations established in Part 1, this paper focuses on the development of an efficient optimization algorithm for the solution of the remap subproblem that is at the heart of OBT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bochev, P., Ridzal, D., Young, J.: Optimization–Based Modeling with Applications to Transport. Part 1. Abstract Formulation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 63–71. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary lagrangian-eulerian methods. Journal of Computational Physics 230(13), 5199–5225 (2011), http://www.sciencedirect.com/science/article/B6WHY-52F895B-2/2/5e30ada70a5c6053464dfe9ceb74cf26 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Coleman, T.F., Li, Y.: A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6(4), 1040–1058 (1996), http://link.aip.org/link/?SJE/6/1040/1 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dukowicz, J.K., Baumgardner, J.R.: Incremental remapping as a transport/advection algorithm. Journal of Computational Physics 160(1), 318–335 (2000), http://www.sciencedirect.com/science/article/B6WHY-45FC8N8-6F/2/179cbfc9634bb79579b68754cebd5525 zbMATHCrossRefGoogle Scholar
  5. 5.
    Ridzal, D., Bochev, P., Young, J., Peterson, K.: Optimization–Based Modeling with Applications to Transport. Part 3. Implementation and Computational Studies. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 81–88. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joseph Young
    • 1
  • Denis Ridzal
    • 2
  • Pavel Bochev
    • 1
  1. 1.Numerical Analysis and ApplicationsSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Optimization and Uncertainty QuantificationSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations