Multilevel Solvers with Aggregations for Voxel Based Analysis of Geomaterials

  • Radim Blaheta
  • Vojtěch Sokol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

Our motivation for voxel based analysis comes from the investigation of geomaterials (geocomposites) arising from rock grouting or sealing. We use finite element analysis based on voxel data from tomography. The arising finite element systems are large scale, which motivates the use of multilevel iterative solvers or preconditioners. Among others we concentrate on multilevel Schwarz preconditioners with aggregations. The aggregations are efficient even in the case of problems with heterogeneity, coefficient oscillations and large coefficient jumps if the aggregations include a proper handling of the strong couplings.

Keywords

Aggregation Technique Multilevel Method Coarse Space Multiscale Basis Function Adaptive Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbenz, P., van Lenthe, G.H., Mennel, U., Mller, R., Sala, M.: A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int. J. for Numerical Methods in Engineering 73(7), 927–947 (2008)MATHCrossRefGoogle Scholar
  2. 2.
    Blaheta, R.: Algebraic Multilevel Methods with Aggregations: An Overview. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 3–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Blaheta, R., Jakl, O., Starý, J., Krečmer, K.: Schwarz DD method for analysis of geocomposites. In: Proceedings of the Twelfth Int. Conference on Civil, Structural and Environmental Engineering Computing, Paper 111. Civil-Comp Press (2009)Google Scholar
  4. 4.
    Charlebois, M., Jirásek, M., Zysset, P.K.: A Nonlocal Constitutive Model for Trabecular Bone Softening in Compression. Biomechanics and Modeling in Mechanobiology 9(5), 597–611 (2010)CrossRefGoogle Scholar
  5. 5.
    Fish, J., Belsky, V.: Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case. Computer Methods in Applied Mechanics and Engineering 126(1-2), 1–16 (1995)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fish, J., Belsky, V.: Generalized Aggregation Multilevel solver. Int. J. for Numerical Methods in Engineering 40(23), 4341–4361 (1997)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hain, M., Wriggers, P.: Numerical homogenization of hardened cement paste. Comput. Mech. 42(2), 197–212 (2008)MATHCrossRefGoogle Scholar
  8. 8.
    Notay, Y.: Aggregation-Based Algebraic Multilevel Preconditioning. SIAM J. Matrix Anal. Appl. 27(4), 998–1018 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Notay, Y., Vassilevski, P.S.: Recursive Krylov-based multigrid cycles. Numer. Liner. Alg. Appl. 15(5), 473–487 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Scheichl, R., Vainikko, E.: Additive Schwarz with Aggregation-Based Coarsening for Elliptic Problems with Highly Variable Coefficients. Computing 80(4), 319–343 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer, Berlin (2005)MATHGoogle Scholar
  12. 12.
    Vaněk, P., Mandel, J., Brezina, M.: Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems. Computing 56(3), 179–196 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Zohdi, T.I., Wriggers, P.: An Introduction to Computational Micromechanics. Springer, Berlin (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Radim Blaheta
    • 1
  • Vojtěch Sokol
    • 2
  1. 1.Institute of Geonics of the Academy of Sciences of the Czech RepublicOstravaCzech Republic
  2. 2.Department of Applied Mathematics, FEECSVŠB - Technical University of OstravaCzech Republic

Personalised recommendations