Optimal Mass Transportation-Based Models for Neuronal Fibers

  • Antonio Marigonda
  • Giandomenico Orlandi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7116)

Abstract

Diffusion Magnetic Resonance Imaging (MRI) is used to (non-invasively) study neuronal fibers in the brain white matter. Reconstructing fiber paths from such data (tractography problem) is relevant in particular to study the connectivity between two given cerebral regions. By considering the fiber paths between two given areas as geodesics of a suitable well-posed optimal control problem (related to optimal mass transportation), we are able to provide a quantitative criterion to estimate the connectivity between two given cerebral regions, and to recover the actual distribution of neuronal fibers between them.

Keywords

Seed Region Optimal Transport Cerebral Region Optimal Transportation Brain White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrachev, A., Lee, P.: Optimal transportation under nonholonomic constraints. Trans. Amer. Math. Soc. 361(11), 6019–6047 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston, Boston (1997)MATHCrossRefGoogle Scholar
  3. 3.
    Bernard, P., Buffoni, B.: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. (JEMS) 9(1), 85–121 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth analysis and control theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)MATHGoogle Scholar
  5. 5.
    Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Birkhäuser Boston, Boston (2004)MATHGoogle Scholar
  6. 6.
    Pichon, E., Westin, C.-F., Tannenbaum, A.: A Hamilton-Jacobi-Bellman Approach to High Angular Resolution Diffusion Tractography. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 180–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Siconolfi, A.: Metric character of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 355(5), 1987–2009 (2003)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)MATHGoogle Scholar
  9. 9.
    Villani, C.: Optimal transport old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonio Marigonda
    • 1
  • Giandomenico Orlandi
    • 1
  1. 1.Department of Computer SciencesUniversity of VeronaVeronaItaly

Personalised recommendations