Abstract

Robust search procedures are a central component in the design of black-box constraint-programming solvers. This paper proposes activity-based search which uses the activity of variables during propagation to guide the search. Activity-based search was compared experimentally to impact-based search and the wdeg heuristics but not to solution counting heuristics. Experimental results on a variety of benchmarks show that activity-based search is more robust than other heuristics and may produce significant improvements in performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 146–150. IOS Press (2004)Google Scholar
  2. 2.
    Brisoux, L., Grégoire, É., Sais, L.: Improving Backtrack Search for SAT by Means of Redundancy. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 301–309. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Dechter, R., Pearl, J.: The cycle-cutset method for improving search performance in ai applications. In: Proceedings of 3rd IEEE Conference on AI Applications, Orlando, FL (1987)Google Scholar
  4. 4.
    Dynadec, I.: Comet v2.1 user manual. Technical report, Providence, RI (2009)Google Scholar
  5. 5.
  6. 6.
    Kadioglu, S., O’Mahony, E., Refalo, P., Sellmann, M.: Incorporating Variance in Impact-Based Search. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 470–477. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 530–535. ACM, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Pesant, G.: Counting and estimating lattice points: Special polytopes for branching heuristics in constraint programming. Optima Newsletter 81, 9–14 (2009)Google Scholar
  11. 11.
    Prosser, P., Stergiou, K., Walsh, T.: Singleton Consistencies. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 353–368. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Schaus, P., Van Hentenryck, P., Régin, J.-C.: Scalable Load Balancing in Nurse to Patient Assignment Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Smith, B., Brailsford, S., Hubbard, P., Williams, H.: The Progressive Party Problem: Integer Linear Programming and Constraint Programming Compared. Constraints 1, 119–138 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Trick, M.A.: A dynamic programming approach for consistency and propagation for knapsack constraints. In: Annals of Operations Research, pp. 113–124 (2001)Google Scholar
  16. 16.
    Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 1173–1178. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laurent Michel
    • 1
  • Pascal Van Hentenryck
    • 2
  1. 1.University of ConnecticutStorrsUSA
  2. 2.Optimization Research Group, NICTA, Victoria Research LaboratoryThe University of MelbourneAustralia

Personalised recommendations