Advertisement

Call-by-Value Solvability, Revisited

  • Beniamino Accattoli
  • Luca Paolini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7294)

Abstract

In the call-by-value lambda-calculus solvable terms have been characterised by means of call-by-name reductions, which is disappointing and requires complex reasonings. We introduce the value-substitution lambda-calculus, a simple calculus borrowing ideas from Herbelin and Zimmerman’s call-by-value λ CBV calculus and from Accattoli and Kesner’s substitution calculus λ sub . In this new setting, we characterise solvable terms as those terms having normal form with respect to a suitable restriction of the rewriting relation.

Keywords

Normal Form Factorisation Theorem Structural Rule Commutative Rule Solvable Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accattoli, B.: An abstract factorisation theorem for explicit substitutions (2011) (accepted at RTA 2012), https://sites.google.com/site/beniaminoaccattoli/factorisation.pdf
  2. 2.
    Accattoli, B.: Jumping around the box. Ph.D. Thesis, Università di Roma La Sapienza (2011)Google Scholar
  3. 3.
    Accattoli, B., Guerrini, S.: Jumping Boxes. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 55–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Accattoli, B., Kesner, D.: The Permutative λ-Calculus. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 23–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Accattoli, B., Kesner, D.: The Structural λ-Calculus. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Accattoli, B., Paolini, L.: Call-by-value solvability, revisited (ext. version) (2012), https://sites.google.com/site/beniaminoaccattoli/CBV-solvabilitywithproofs.pdf
  7. 7.
    Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics, vol. 103. North-Holland (1984)Google Scholar
  8. 8.
    Barendregt, H.: Solvability in lambda-calculi. The Journal of Symbolic Logic 39(2), 372 (1975)Google Scholar
  9. 9.
    Dyckhoff, R., Lengrand, S.: Call-by-value lambda-calculus and ljq. J. Log. Comput. 17(6), 1109–1134 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fernández, M., Siafakas, N.: Labelled lambda-calculi with explicit copy and erase. In: LINEARITY, pp. 49–64 (2009)Google Scholar
  11. 11.
    Herbelin, H., Zimmermann, S.: An Operational Account of Call-by-Value Minimal and Classical λ-Calculus in “Natural Deduction” Form. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 142–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Hofmann, M.: Sound and complete axiomatisations of call-by-value control operators. Mathematical Structures in Computer Science 5, 461–482 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hyland, J.M.E.: A Survey of Some Useful Partial Order Relations on Terms of the Lambda Calculus. In: Böhm, C. (ed.) λ-Calculus and Computer Science Theory. LNCS, vol. 37, pp. 83–95. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  14. 14.
    Klop, J.W.: On Solvability by λ I - Terms. In: Böhm, C. (ed.) λ-Calculus and Computer Science Theory. LNCS, vol. 37, pp. 342–345. Springer, Heidelberg (1975)Google Scholar
  15. 15.
    Landin, P.J.: A correspondence between ALGOL 60 and Church’s lambda-notation: Part I and Part II. Communications of the ACM 8(2-3), 89–101, 158–165 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Melliès, P.A.: A Factorisation Theorem in Rewriting Theory. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 49–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE Computer Society Press, Piscataway (1989)Google Scholar
  18. 18.
    Pagani, M., Rocca, S.R.D.: Linearity, non-determinism and solvability. Fundam. Inform. 103(1-4), 173–202 (2010)zbMATHGoogle Scholar
  19. 19.
    Paolini, L.: Call-by-Value Separability and Computability. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 74–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Paolini, L., Pimentel, E., Ronchi Della Rocca, S.: Lazy strong normalization. Electr. Notes Theor. Comput. Sci. 136, 103–116 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Paolini, L., Ronchi Della Rocca, S.: Call-by-value solvability. Theoretical Informatics and Applications 33(6), 507–534 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1, 125–159 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: a Metamodel for Computation. Texts in Theoretical Computer Science: An EATCS. Springer, Berlin (2004)Google Scholar
  24. 24.
    Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. LISP and Symbolic Computation 6, 289–360 (1993)CrossRefGoogle Scholar
  25. 25.
    Saurin, A.: Standardization and Böhm Trees for Λμ-Calculus. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 134–149. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Wadsworth, C.P.: The relation between computational and denotational properties for Scott’s D  ∞ -models of the lambda-calculus. SIAM Journal of Computing 5(3), 488–521 (1976)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Beniamino Accattoli
    • 1
  • Luca Paolini
    • 2
  1. 1.INRIA and LIX (École Polytechnique)France
  2. 2.Dipartimento di InformaticaUniversità degli Studi di TorinoItaly

Personalised recommendations