Advanced Mechanics of Piezoelectricity pp 205-247 | Cite as
Saint-Venant Decay Problems in Piezoelectricity
Chapter
Abstract
As an application of the symplectic mechanics described in the previous chapter, Saint-Venant decay analysis of piezoelectric strips is presented in this chapter. Applications of state space approach to the Saint-Venant decay problem of piezoelectric laminates are also discussed. Particularly, a mixed-variable state space model for dissimilar piezoelectric laminates and multilayered graded piezoelectric materials is described. Further formulations for decay analysis of piezoelectric-piezomagnetic sandwich structures are discussed.
Keywords
Decay Rate Piezoelectric Material Versus Versus Versus Versus Versus Antiplane Shear State Space Approach
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Saint-Venant AJCB: Memoire sur la Torsion des Prismes. Mem. Divers Savants 14, 233–560 (1855).Google Scholar
- [2]Qin QH, Wang JS: Hamiltonian system for analyzing Saint-Venant end effects of piezoelectric strips. Journal of Mechanics and MEMS 1(1), 59–71 (2009).Google Scholar
- [3]Tarn JQ, Huang LJ: Saint-Venant end effects in multilayered piezoelectric laminates. International Journal of Solids and Structures 39(19), 4979–4998 (2002).MathSciNetMATHCrossRefGoogle Scholar
- [4]Xue Y, Liu J: Decay rate of Saint-Venant end effects for plane deformations of piezoelectric-piezomagnetic sandwich structures. Acta Mechanica Solida Sinica 23(5), 407–419 (2010).MathSciNetGoogle Scholar
- [5]He XQ, Wang JS, Qin QH: Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates. Mechanics of Materials 39(12), 1053–1065 (2007).CrossRefGoogle Scholar
- [6]Love AEH: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927).MATHGoogle Scholar
- [7]Horgan CO: Recent developments concerning Saint-Venant’s principle: an update. Applied Mechanics Reviews 42,295–303 (1989).MathSciNetCrossRefGoogle Scholar
- [8]Horgan CO: Recent developments concerning Saint-Venant’s principle: a second update. Applied Mechanics Reviews 49, s101–s111 (1996).CrossRefGoogle Scholar
- [9]Batra RC, Yang JS: Saint-Venants principle in linear piezoelectricity. Journal of Elasticity 38(2), 209–218 (1995).MathSciNetMATHCrossRefGoogle Scholar
- [10]Batra RC, Zhong X: Saint-Venant’s principle for a helical piezoelectric body. Journal of Elasticity 43(1), 69–79 (1996).MathSciNetMATHCrossRefGoogle Scholar
- [11]Fan H: Decay-rates in a piezoelectric strip. International Journal of Engineering Science 33(8), 1095–1103 (1995).MathSciNetMATHCrossRefGoogle Scholar
- [12]Ruan XP, Danforth SC, Safari A, Chou TW: Saint-Venant end effects in piezoceramic materials. International Journal of Solids and Structures 37(19), 2625–2637 (2000).MathSciNetMATHCrossRefGoogle Scholar
- [13]Borrelli A, Horgan CO, Patria MC: Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 460(2044), 1193–1212 (2004).MathSciNetMATHCrossRefGoogle Scholar
- [14]Borrelli A, Horgan CO, Patria MC: Saint-Venant end effects for plane deformations of linear piezoelectric solids. International Journal of Solids and Structures 43(5), 943–956 (2006).MathSciNetMATHCrossRefGoogle Scholar
- [15]Bisegna P: The Saint-Venant problem for monoclinic piezoelectric cylinders. Zeitschrift Fur Angewandte Mathematik Und Mechanik 78(3), 147–165 (1998).MathSciNetMATHCrossRefGoogle Scholar
- [16]Rovenski V, Harash E, Abramovich H: Saint-Venant’s problem for homogeneous piezoelectric beams. Journal of Applied Mechanics-Transactions of the ASME 74(6), 1095–1103 (2007).CrossRefGoogle Scholar
- [17]Vidoli S, Batra RC, dell’Isola F: Saint-Venant’s problem for a second-order piezoelectric prismatic bar. International Journal of Engineering Science 38(1), 21–45 (2000).MathSciNetMATHCrossRefGoogle Scholar
- [18]Zhong WX, Williams FW: Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix. Computers and Structures 49, 749–750 (1993).MathSciNetMATHCrossRefGoogle Scholar
- [19]Yao WA, Zhong WX, Lim CW: Symplectic Elasticity. World Scientific Publishing, Singapore (2009).MATHCrossRefGoogle Scholar
- [20]Borrelli A, Horgan CO, Patria MC: Saint-Venant principle for anti-plane shear deformations of linear piezoelectric materials. SIAM Journal on Applied Mathematics 62, 2027–2044 (2003).MathSciNetCrossRefGoogle Scholar
- [21]Wang JS, Qin QH: Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philosophical Magazine 87(2), 225–251 (2007).CrossRefGoogle Scholar
Copyright information
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2013