Inference Based Query Expansion Using User’s Real Time Implicit Feedback

  • Sanasam Ranbir Singh
  • Hema A. Murthy
  • Timothy A. Gonsalves
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 272)

Abstract

Query expansion is a commonly used technique to address the problem of short and under-specified search queries in information retrieval. Traditional query expansion frameworks return static results, whereas user’s information needs is dynamics in nature. User’s search goal, even for the same query, may be different at different instances. This often leads to poor coherence between traditional query expansion and user’s search goal resulting poor retrieval performance. In this study, we observe that user’s search pattern is influenced by his/her recent searches in many search instances. We further propose a query expansion framework which explores user’s real time implicit feedback provided at the time of search to determine user’s search context and identify relevant query expansion terms. From extensive experiments, it is evident that the proposed query expansion framework adapts to the changing needs of user’s information need.

Keywords

Cosine Similarity Query Term Query Expansion Expansion Term Implicit Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agichtein, E., Brill, E., Dumais, S., Ragno, R.: Learning user interaction models for predicting web search result preferences. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3–10. ACM (2006)Google Scholar
  2. 2.
    Attar, R., Fraenkel, A.S.: Local feedback in full-text retrieval systems. Journal of ACM 24(3), 397–417 (1977)MATHCrossRefGoogle Scholar
  3. 3.
    Billerbeck, B., Scholer, F., Williams, H.E., Zobel, J.: Query expansion using associated queries. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management. ACM (2003)Google Scholar
  4. 4.
    Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)CrossRefGoogle Scholar
  5. 5.
    Carroll, J.M., Rosson, M.B.: Paradox of the active user. In: Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, pp. 80–111. MIT Press (1987)Google Scholar
  6. 6.
    Croft, W.B., Harper, D.J.: Using probabilistic model of document retrieval without relevance information. Journal of Documentation 35, 285–295 (1979)CrossRefGoogle Scholar
  7. 7.
    He, B., Ounis, I.: Term Frequency Normalisation Tuning for BM25 and DFR Models. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 200–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Jaime, T., Eytan, A., Rosie, J., Michael, A.S.P.: Information re-retrieval: Repeat queries in yahoo’s logs. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 151–158. ACM (2007)Google Scholar
  9. 9.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Information Processing and Management 36(2), 207–227 (2000)CrossRefGoogle Scholar
  10. 10.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM (2002)Google Scholar
  11. 11.
    Jones, S.: Automatic keyword classification for information retrieval. Butterworths, London (1971)Google Scholar
  12. 12.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: A bibliography. SIGIR Forum 32(2), 18–28 (2003)CrossRefGoogle Scholar
  13. 13.
    Qiu, Y., Frei, H.: Concept based query expansion. In: Proceeding of the 16th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 151–158. ACM (1993)Google Scholar
  14. 14.
    Ranbir, S.S., Murthy, H.A., Gonsalves, T.A.: Effect of word density on measuring words association. ACM Compute. 1–8 (2008)Google Scholar
  15. 15.
    Ranbir, S.S., Murthy, H.A., Gonsalves, T.A.: Feature selection for text classification based on gini coefficient of inequality. In: Proceedings of the Fourth International Workshop on Feature Selection in Data Mining, pp. 76–85 (2010)Google Scholar
  16. 16.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. ACM Communication 18(11), 613–620 (1975)MATHCrossRefGoogle Scholar
  17. 17.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Survey 34(1), 1–47 (2002)CrossRefGoogle Scholar
  18. 18.
    Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: Proceedings of the Nineteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 4–11 (1996)Google Scholar
  19. 19.
    Xu, J., Croft, W.B.: Improving the effectiveness of information retrieval with local context analysis. ACM Transaction on Information System 18(1), 79–112 (2000)CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 412–420. ACM (1997)Google Scholar
  21. 21.
    Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y.: Probabilistic query expansion using query logs. In: Proceedings of the 11th International Conference on World Wide Web, pp. 325–332. ACM (2002)Google Scholar
  22. 22.
    Hsu, C.-C., Li, Y.-T., Chen, Y.-W., Wu, S.-H.: Query Expansion via Link Analysis of Wikipedia for CLIR. In: Proceedings of NTCIR-7 Workshop Meeting, Tokyo, Japan, December 16-19 (2008)Google Scholar
  23. 23.
    Zhang, J., Deng, B., Li, X.: Concept Based Query Expansion Using WordNet. In: Proceedings of the 2009 International e-Conference on Advanced Science and Technology. IEEE Computer Society, USA (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sanasam Ranbir Singh
    • 1
  • Hema A. Murthy
    • 2
  • Timothy A. Gonsalves
    • 3
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology, GuwahatiGuwahatiIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology, MadrasGuwahatiIndia
  3. 3.School of Computing and Electrical EngineeringIndian Institute of Technology, MandiGuwahatiIndia

Personalised recommendations