Interactive Large-Scale Crowd Simulation

  • Dinesh Manocha
  • Ming C. Lin
Part of the Communications in Computer and Information Science book series (CCIS, volume 242)


We survey some recent work on interactive modeling, simulation, and control of large-scale crowds. Our primary focus is on interactive algorithms that can handle a large number of autonomous agents. This includes techniques for automatically computing collision-free trajectories for each agent as well as generating emergent crowd behaviors including lane formation, edge effects, vortices, congestion avoidance, swirling and modeling varying crowd density. Some of these methods map well to current multi-core and many-core processors and we highlight their performance in different urban scenarios.


Collision Avoidance Computer Animation Congestion Avoidance Crowd Behavior Dense Crowd 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonini, G., Venegas, S., Bierlaire, M., Thiran, J.-P.: Behavioral priors for detection and tracking of pedestrians in video sequences. International Journal of Computer Vision 69(2), 159–180 (2006)CrossRefGoogle Scholar
  2. 2.
    Bayazit, O.B., Lien, J.-M., Amato, N.M.: Better group behaviors in complex environments with global roadmaps. In: Int. Conf. on the Sim. and Syn. of Living Sys. (Alife), pp. 362–370 (2002)Google Scholar
  3. 3.
    Channon, P.H., Hopkins, S.H., Phan, D.T.: Derivation of optimal walking motions for a biped walking robot (1992)Google Scholar
  4. 4.
    Chenney, S.: Flow tiles. In: Proc. 2004 ACM SIGGRAPH / Eurographics Symposium on Computer Animation (2004)Google Scholar
  5. 5.
    Van den Berg, J., Seawall, J., Lin, M.C., Manocha, D.: Virtualized traffic: Reconstructing traffic flows from discrete spatio-temporal data. In: Proc. of IEEE Virtual Reality Conference, pp. 183–190 (2009)Google Scholar
  6. 6.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. International Journal on Robotics Research 17(7), 760–772 (1998)CrossRefGoogle Scholar
  7. 7.
    Gayle, R., Sud, A., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation of independent agents using adaptive roadmaps. IEEE Trans. on Visualization and Computer Graphics, 34–38 (January/February 2009)Google Scholar
  8. 8.
    Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M.C., Manocha, D., Dubey, P.: Clearpath: Highly parallel collision avoidance for multi-agent simulation. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187 (2009)Google Scholar
  9. 9.
    Guy, S., Chuggani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: A least-effort approach to crowd simulation. In: Proc. of Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2010)Google Scholar
  10. 10.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282 (1995); Copyright (C) 2008 The American Physical Society; Please report any problems to prola@aps.orgCrossRefGoogle Scholar
  11. 11.
    Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36, 507–535 (2002)CrossRefGoogle Scholar
  12. 12.
    Jin, X., Xu, J., Wang, C.C.L., Huang, S., Zhang, J.: Interactive control of large crowd navigation in virtual environment using vector field. In: IEEE Computer Graphics and Application (2008)Google Scholar
  13. 13.
    Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems 4(10), 271–288 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Juang, J.: Minimal energy control on trajectory generation. In: International Conference on Information Intelligence and Systems, p. 204 (1999)Google Scholar
  15. 15.
    Kagarlis, M.: Method and apparatus of simulating movement of an autonomous entity through an environment. United States Patent No. US 7,188,056 (September 2002)Google Scholar
  16. 16.
    Kamphuis, A., Overmars, M.: Finding paths for coherent groups using clearance. In: Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 19–28 (2004)Google Scholar
  17. 17.
    Kang, Y., Park, S., Lee, E.: An efficient control over human running animation with extension of planar hopper model. In: Pacific Graphics, pp. 169–176 (1998)Google Scholar
  18. 18.
    Karamouzas, I., Heil, P., van Beek, P., Overmars, M.H.: A Predictive Collision Avoidance Model for Pedestrian Simulation. In: Egges, A., Geraerts, R., Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 41–52. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers (1991)Google Scholar
  20. 20.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006),
  21. 21.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia) (2009)Google Scholar
  22. 22.
    Patil, S., van den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations using navigation fields. Technical report, Department of Computer Science, University of North Carolina (May 2009)Google Scholar
  23. 23.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108 (2007)Google Scholar
  24. 24.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Virtual Crowds: Methods, Simulation and Control. Morgan and Claypool Publishers (2008)Google Scholar
  25. 25.
    Pettré, J., Ondřej, J., Olivier, A., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Symposium on Computer Animation, pp. 189–198. ACM (2009)Google Scholar
  26. 26.
    Wigan, M.R.: Why should we worry about pedestrians. In: 15th Conference of Australian Institutes of Transport Research, CAITR (1993)Google Scholar
  27. 27.
    Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics 21, 25–34 (1987)CrossRefGoogle Scholar
  28. 28.
    Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)Google Scholar
  29. 29.
    Roussel, L., Canudas de Wit, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. IEEE Transactions on Robotics and Automation 16, 2036–2041 (1998)Google Scholar
  30. 30.
    Sarmady, S., Haron, F., Hj, A.Z.: Modeling groups of pedestrians in least effort crowd movements using cellular automata. In: Proc. of 3rd Asia International Conference on Modeling and Simulation, pp. 520–525 (2009)Google Scholar
  31. 31.
    Scovanner, P., Tappen, M.F.: Learning pedestrian dynamics from the realworld. In: ICCV (2009)Google Scholar
  32. 32.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: SCA 2005: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 19–28. ACM Press, New York (2005)CrossRefGoogle Scholar
  33. 33.
    Simeon, T., Leroy, S., Laumond, J.: Path coordination for multiple mobile robots: a geometric algorithm. In: Proc. of IJCAI (1999)Google Scholar
  34. 34.
    Snape, J., Manocha, D.: Navigating multiple simple-airplanes in 3d workspace. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3974–3980 (2009)Google Scholar
  35. 35.
    Still, G.: Crowd Dynamics. PhD thesis, University of Warwick, UK (2000)Google Scholar
  36. 36.
    Sud, A., Andersen, E., Curtis, S., Lin, M., Manocha, D.: Real-time path planning for virtual agents in dynamic environments. In: Proc. of IEEE VR, pp. 91–98 (2007)Google Scholar
  37. 37.
    Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. In: Proc. of ACM SIGGRAPH, pp. 1160–1168 (2006)Google Scholar
  38. 38.
    van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-Body Collision Avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for realtime multi-agent navigation. In: Proc. of IEEE Conference on Robotics and Automation, pp. 1928–1935 (2008)Google Scholar
  40. 40.
    van den Berg, J., Patil, S., Seawall, J., Manocha, D., Lin, M.C.: Interactive navigation of individual agents in crowded environments. In: Proc. of ACM Symposium on Interactive 3D Graphics and Games, pp. 139–147 (2008)Google Scholar
  41. 41.
    Warren, C.W.: Multiple path coordination using artificial potential fields. In: Proc. of IEEE Conf. on Robotics and Automation, pp. 500–505 (1990)Google Scholar
  42. 42.
    Yersin, B., Maim, J., Ciechomski, P., Schertenleib, S., Thalmann, D.: Steering a virtual crowd based on a semantically augmented navigation graph. In: VCROWDS (2005)Google Scholar
  43. 43.
    Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128 (2007)Google Scholar
  44. 44.
    Zipf, G.K.: Human behavior and the principle of least effort. Addison-Wesley Press (1949)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dinesh Manocha
    • 1
  • Ming C. Lin
    • 1
  1. 1.Department of Computer ScienceUniversity of North CarolinaChapel HillU.S.A.

Personalised recommendations