Quasi-Steady State Approximations and Multistability in the Double Phosphorylation-Dephosphorylation Cycle

  • Guido Dell’Acqua
  • Alberto Maria Bersani
Part of the Communications in Computer and Information Science book series (CCIS, volume 273)

Abstract

In this paper we analyze the double phosphorylation-dephosphorylati- on cycle (or double futile cycle), which is one of the most important biochemical mechanisms in intracellular reaction networks, in order to discuss the applicability of the standard quasi steady-state approximation (sQSSA) to complex enzyme reaction networks, like the ones involved in intracellular signal transduction. In particular we focus on what we call “complex depletion paradox”, according to which complexes disappear in the conservation laws, in contrast with the equations of their dynamics. In fact, in common literature the intermediate complexes either are ignored or are supposed to rapidly become negligible in the quasi steady-state phase, differently from what really happens, as shown studying the cycle without any quasi-steady state approximation. Applying the total quasi steady-state approximation (tQSSA) to the double phosphorylation-dephosphorylation cycle, we show how to solve the apparent paradox, without the need of further hypotheses, like, for example, the substrate sequestration.

Keywords

Full System Transient Phase Stationary Branch Total Substrate Multisite Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henri, V.: Recherches sur la loi de l’action de la sucrase. C. R. Hebd. Acad. Sci. 133, 891–899 (1901)Google Scholar
  2. 2.
    Henri, V.: Über das gesetz der wirkung des invertins. Z. Phys. Chem. 39, 194–216 (1901)Google Scholar
  3. 3.
    Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–339 (1913)Google Scholar
  4. 4.
    Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)Google Scholar
  5. 5.
    Segel, L.: On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593 (1988)MathSciNetMATHGoogle Scholar
  6. 6.
    Bisswanger, H.: Enzyme Kinetics. In: Principles and Methods, Wiley-VCH (2002)Google Scholar
  7. 7.
    Segel, L.A., Slemrod, M.: The quasi steady-state assumption: a case study in perturbation. Siam Rev. 31, 446–477 (1989)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Straus, O.H., Goldstein, A.: Zone behavior of enzymes. J. Gen. Physiol. 26, 559–585 (1943)CrossRefGoogle Scholar
  9. 9.
    Sols, A., Marco, R.: Concentrations of metabolites and binding sites, implications in metabolic regulation. Curr. Top. Cell. Regul. 2, 227–273 (1970)Google Scholar
  10. 10.
    Laidler, K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624 (1955)CrossRefGoogle Scholar
  11. 11.
    Borghans, J., de Boer, R., Segel, L.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)MATHCrossRefGoogle Scholar
  12. 12.
    Tzafriri, A.R.: Michaelis-Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003)CrossRefGoogle Scholar
  13. 13.
    Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, K.M., Shirouzu, M., Yokoyama, S., Konagaya, A.: A computational model on the modulation of mitogen-activated protein kinase (mapk) and akt pathways in heregulin-induced erbb signalling. Biochem. J. 373, 451–463 (2003)CrossRefGoogle Scholar
  14. 14.
    Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164, 353–359 (2004)CrossRefGoogle Scholar
  15. 15.
    Chickarmane, V., Kholodenko, B.N., Sauro, H.M.: Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. J. Theor. Biol. 244, 68–76 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ortega, F., Garces, J.L., Mas, F., Kholodenko, B.N., Cascante, M.: Bistability from double phosphorylation in signal transduction. kinetic and structural requirements. FEBS J. 273, 3915–3926 (2006)CrossRefGoogle Scholar
  17. 17.
    Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological system. Proc. Natl. Acad. Sci. 78, 6840–6844 (1981)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Camps, M., Nichols, A., Arkinstall, S.: Dual specificity phosphatases: a gene family for control of map kinase function. FASEB J. 14, 6–16 (2000)Google Scholar
  19. 19.
    Zhan, X.L., Wishart, M.J., Guan, K.L.: Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem. Rev. 101, 2477–2496 (2001)CrossRefGoogle Scholar
  20. 20.
    Pedersen, M.G., Bersani, A.M., Bersani, E.: Steady-state approximations in intracellular signal transduction – a word of caution. J. Math. Chem. 43, 1318–1344 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. J. Theor. Biol. 250, 209–218 (2008)CrossRefGoogle Scholar
  22. 22.
    Flach, E.H., Schnell, S.: Use and abuse of the quasi-steady-state approximation. IEE Proceed. Syst. Biol. 153, 187–191 (2006)Google Scholar
  23. 23.
    van Slyke, D.D., Cullen, G.E.: The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180 (1914)Google Scholar
  24. 24.
    Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588 (2000)CrossRefGoogle Scholar
  25. 25.
    Ciliberto, A., Capuani, F., Tyson, J.J.: Modeling networks of coupled anzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3, 463–472 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pedersen, M., Bersani, A.M.: The total quasi-steady state approximation simplifies theoretical analysis at non-negligible enzyme concentrations: Pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 60, 267–283 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bluthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., Kholodenko, B.N.: Effects of sequestration on signal transduction cascades. FEBS J. 273, 895–906 (2006)CrossRefGoogle Scholar
  28. 28.
    Legewie, S., Schoeberl, B., Blüthgen, N., Herzel, H.: Competing docking interactions can bring about bistability in the mapk cascade. Biophys. J. 93, 2279–2288 (2007)CrossRefGoogle Scholar
  29. 29.
    Xing, J., Chen, J.: The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder. PLOS ONE 3, e2140 (2008)CrossRefGoogle Scholar
  30. 30.
    Salazar, C., Hofer, T.: Kinetic models of phosphorylation cycles: A systematic approach using the rapid equilibrium approximation for protein-protein interactions. Biosystems 83, 195–206 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guido Dell’Acqua
    • 1
  • Alberto Maria Bersani
    • 1
  1. 1.Dipartimento di Scienze di Base e Applicate all’IngegneriaSapienza University of RomeRomeItaly

Personalised recommendations