User Centred Design in BCI Development

  • Elisa Mira Holz
  • Tobias Kaufmann
  • Lorenzo Desideri
  • Massimiliano Malavasi
  • Evert-Jan Hoogerwerf
  • Andrea Kübler
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Development of assistive solutions for people with disabilities clearly benefits from the full involvement of potential users in all stages of the development cycle. In this chapter we will discuss different aspects of user involvement and the role that users could or should have in the design and development of BCI driven assistive applications. We will focus on BCI applications in the field of communication, access to ICT and environmental control, typical areas where AT solutions can make the difference between participation or exclusion.


Amyotrophic Lateral Sclerosis Assistive Technology User Centre Design Disable User Human Centre Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aloise, F., Schettini, F., Aricò, P., Leotta, F., Salinari, S., Mattia, D., Babiloni, F., et al.: P300-based brain–computer interface for environmental control: an asynchronous approach. J. Neural Eng. 8(2), 025025 (2011). DOI  10.1088/1741-2560/8/2/025025 Google Scholar
  2. 2.
    Association for the Advancement of Assistive Technology in Europe. Strategic Development, 2009. Public document on Retreived 9/07/2012Google Scholar
  3. 3.
    Bensch, M., Karim, A.A., Mellinger, J., Hinterberger, T., Tangermann, M., Bogdan, M., Rosenstiel, W., Birbaumer, N.: Nessi: An EEG-controlled web browser for severely paralyzed patients. Comput. Intell. Neurosci. 71863 (2007).Google Scholar
  4. 4.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., et al.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999). DOI 10.1038/18581Google Scholar
  5. 5.
    Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A., Müller, K-R., Curio, G., et al.: Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4), 1303–1309 (2010). DOI 10.1016/j.neuroimage.2010.03.022Google Scholar
  6. 6.
    Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller K-R.: Single-trial analysis and classification of ERP components – A tutorial. NeuroImage 56(2), 814–825 (2011). DOI 10.1016/j.neuroimage.2010.06.048Google Scholar
  7. 7.
    Brouwer A-M., van Erp, J.B.F.: A tactile P300 brain–computer interface. Front. Neurosc. 4, 19 (2010). DOI 10.3389/fnins.2010.00019Google Scholar
  8. 8.
    Brunner, P., Joshi, S., Briskin, S., Wolpaw, J.R., Bischof, H., Schalk, G.: Does the “P300” speller depend on eye gaze? J. Neural Eng. 7(5), 056013 (2010). DOI 10.1088/1741-2560/7/5/056013Google Scholar
  9. 9.
    Demers, L., Weiss-Lambrou, R., Ska, Quebec, B.: User Evaluation of Satisfaction with Assistive Technology (QUEST version 2.0) an outcome measure for assistive technology devices (2002). Institut for Matching Person and Technology. Webster, NYGoogle Scholar
  10. 10.
    Furdea, A., Halder, S., Krusienski, D.J., Bross, D., Nijboer, F., Birbaumer, N., Kübler, A.: An auditory oddball (P300) spelling system for brain–computer interfaces. Psychophysiology 46(3), 617–625 (2009). DOI 10.1111/j.1469-8986.2008.00783.xGoogle Scholar
  11. 11.
    Galán, F., Nuttin, M., Lew, E., Ferrez, P.W., Vanacker, G., Philips, J., Millán, JdR.: A brain-actuated wheelchair: asynchronous and non-invasive Brain–computer interfaces for continuous control of robots. Clin. Neurophysiol. 119(9), 2159–2169 (2008). DOI 10.1016/j.clinph.2008.06.001Google Scholar
  12. 12.
    Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gram, F., et al.: How many people are able to control a P300-based brain–computer interface (BCI)? Neurosci. Lett. 462(1), 94–98 (2009). DOI 10.1016/j.neulet.2009.06.045Google Scholar
  13. 13.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of experimental and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.), Human mental workload, pp. 139–183. North-Holland, Amsterdam (1988)Google Scholar
  14. 14.
    Henderson, S., Skelton, H., Rosenbaum, P.: Assistive devices for children with functional impairments: impact on child and caregiver function. Dev. Med. Child Neurol. 50(2), 89–98 (2008).Google Scholar
  15. 15.
    Hoogerwerf, E.J., Mongardi, S., Staiger-Sälzer, P., Zickler, C.: BCI research and user involvement: the role of independent AT centres in the TOBI project. In: Assistive Technology – technology transfer: Proceedings of the AAATE Workshop 2010, Sheffield, UK, 4-5/10/2010 (2010)Google Scholar
  16. 16.
    Höhne, J., Schreuder, M., Blankertz, B., Tangermann, M.: A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front. Neurosci. 5, 99 (2011). DOI 10.3389/fnins.2011.00099Google Scholar
  17. 17.
    Jin, J., Horki, P., Brunner, C., Wang, X., Neuper, C., Pfurtscheller, G.: A new P300 stimulus presentation pattern for EEG-based spelling systems. Biomedizinische Technik. Biomed. Eng. 55(4), 203–210 (2010). DOI 10.1515/BMT.2010.029Google Scholar
  18. 18.
    Kleih, S.C., Kaufmann, T., Zickler, C., Halder, S., Leotta, F., Cincotti, F., Aloise, F., Riccio, A., Herbert, C., Mattia, D., Kübler, A.: Out of the frying pan into the fire-the P300-based BCI faces real-world challenges. Prog. Brain Res. 194, 27–46 (2011).Google Scholar
  19. 19.
    Krausz, G., Ortner, R., Opisso, E.: Accuracy of a brain computer interface (P300 Spelling Device) used by people with motor impairments. Stud. Health Technol. Inform. 167, 182–186 (2011).Google Scholar
  20. 20.
    Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2008). DOI 10.1016/j.jneumeth.2007.07.017Google Scholar
  21. 21.
    Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparison of classification techniques for the P300 Speller. J. Neural Eng. 3(4), 299–305 (2006)Google Scholar
  22. 22.
    Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N., Wolpaw, J.R.: Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurology 64(10), 1775–1777 (2005). DOI 10.1212/01.WNL.0000158616.43002.6DGoogle Scholar
  23. 23.
    Kübler, A., Furdea, A., Halder, S., Hösle, A.: Brain Painting BCI meets art. In: Müller-Putz, G.R., Brunner, C., Leeb, R., furtscheller, G., Neuper C. (eds.) 4th International Brain–Computer Interface Workshop and Training Course, pp. 361–366. Graz University of Technology, Austria: Verlag der Technischen Universität Graz (2008)Google Scholar
  24. 24.
    Lane, J.P.: Delivering on the ‘D’ in R&D: Recommendations for Increasing Transfer Outcomes from Development Projects. SEAT Center and ATIA (2010)Google Scholar
  25. 25.
    Leeb, R., Friedman, D., Müller-Putz, G.R., Scherer, R., Slater, M., Pfurtscheller, G.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 79642 (2007). DOI 10.1155/2007/79642Google Scholar
  26. 26.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1–R13 (2007). DOI 10.1088/1741-2560/4/2/R01Google Scholar
  27. 27.
    Mak, J.N., Arbel, Y., Minett, J.W., McCane, L.M., Yuksel, B., Ryan, D., Thompson, D., et al.: Optimizing the P300-based brain–computer interface: current status, limitations and future directions. J. Neural Eng. 8(2), 025003 (2011). DOI 10.1088/1741-2560/8/2/025003Google Scholar
  28. 28.
    McFarland, D.J., Sarnacki, W.A., Townsend, G., Vaughan, T., Wolpaw, J.R.: The P300-based brain–computer interface (BCI): effects of stimulus rate. Clin. Neurophysiol. 122(4), 731–737 (2011).Google Scholar
  29. 29.
    Millán, JdR.: Adaptive brain interfaces. Commun. ACM. 46(3), 74–80 (2003)Google Scholar
  30. 30.
    Millán, JdR., Ferrez, P.W., Galán, F., Lew, E., Chavarriaga, R.: Non-invasive brain-machine interaction. Intern. J. Pattern Recognit. Artif. Intell. 22(5), 959–972 (2008)Google Scholar
  31. 31.
    Millán, JdR., Mouriño, J.: Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 159–161 (2003)Google Scholar
  32. 32.
    Millán, J.D., Rupp, R., Müller-Putz, G.R., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K.R., Mattia, D.: Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 7, 4 (2010)Google Scholar
  33. 33.
    Mugler, E.M., Ruf, C.A., Halder, S., Bensch, M., Kübler, A.: Design and implementation of a P300-based brain–computer interface for controlling an internet browser. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 599–609 (2010). DOI 10.1109/TNSRE.2010.2068059Google Scholar
  34. 34.
    Münßinger, J.I., Halder, S., Kleih, S., Furdea, A., Raco, V., Hösle, A., Kübler, A.: Brain painting: First evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front. Neurosci. 4, 182 (2010). DOI 10.3389/fnins.2010.00182Google Scholar
  35. 35.
    Neumann, N., Kübler, A.: Training locked-in patients: a challenge for the use of brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 169–172 (2003). DOI 10.1109/TNSRE.2003.814431Google Scholar
  36. 36.
    Nijboer, F., Sellers, E.W., Mellinger, J., Jordan, M.A., Matuz, T., Furdea, A., Halder, S., Mochty, U., Krusienski, D.J., Vaughan, T.M., Wolpaw, J.R., Birbaumer, N., Kübler, A.: A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119(8), 1909–1916 (2008)Google Scholar
  37. 37.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T.O., Müller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 21(4), 30 (2010)Google Scholar
  38. 38.
    Pires, G., Castelo-Branco, M., Nunes, U.: Visual P300-based BCI to steer a wheelchair: a Bayesian approach. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008, 658–661 (2008). DOI 10.1109/IEMBS.2008.4649238Google Scholar
  39. 39.
    Riccio, A., Leotta, F., Bianchi, L., Aloise, F., Zickler, C., Hoogerwerf, E.J., et al.: Workload measurement in a communication application operated through a P300-based brain–computer interface. J. Neural Eng. 8(2), 025028 (2011)Google Scholar
  40. 40.
    Salvaris, M., Sepulveda, F.: Visual modifications on the P300 speller BCI paradigm. J. Neural Eng. 6(4), 046011 (2009). DOI 10.1088/1741-2560/6/4/046011Google Scholar
  41. 41.
    Sellers, E.W., Kübler, A., Donchin, E.: Brain–computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 221–224 (2006). DOI 10.1109/TNSRE.2006.875580Google Scholar
  42. 42.
    Schreuder, M., Blankertz, B., Tangermann, M.: A new auditory multi-class brain–computer interface paradigm: spatial hearing as an informative cue. PloS One 5(4), e9813 (2010). DOI 10.1371/journal.pone.0009813Google Scholar
  43. 43.
    Schreuder, M., Rost, T., Tangermann, M.: Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI. Front. Neurosci. 5, 112 (2011). DOI 10.3389/fnins.2011.00112Google Scholar
  44. 44.
    Smith, E., Delargy, M.: Clinical review: Locked-in syndrome. Br. Med. J. 330(7488), 406–409 (2005)Google Scholar
  45. 45.
    Standish Group. CHAOS Report. Boston: The Standish Group International Inc. (2009)Google Scholar
  46. 46.
    Takano, K., Komatsu, T., Hata, N., Nakajima, Y., Kansaku, K.: Visual stimuli for the P300 brain–computer interface: A comparison of white/gray and green/blue flicker matrices. Clin. Neurophysiol. 120(8), 1562–1566 (2009). DOI 10.1016/j.clinph.2009.06.002Google Scholar
  47. 47.
    Tangermann, M.W., Krauledat, M., Grzeska, K., Sagebaum, M., Vidaurre, C., Blankertz, B., Vidaurre, C., Müller, K.R.: Playing pinball with non-invasive BCI. In Proc. Advances in Neural Information Processing Systems 21 (NIPS); Vancouver, Canada (2008)Google Scholar
  48. 48.
    Tangermann, M., Schreuder, M., Dähne, S., Höhne, J., Regler, S., Ramsey, A., Queck, M., Williamson, J., Murray-Smith, R.: Optimized stimulation events for a visual ERP BCI. Int. J. Bioelectromagn 13(3), 119–120 (2011).Google Scholar
  49. 49.
    Townsend, G., LaPallo, B.K., Boulay, C.B., Krusienski, D.J., Frye, G.E., Hauser, C.K., Schwartz, N.E., Vaughan, T.M., Wolpaw, J.R., Sellers, E.W.: A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin. Neurophysiol. 121(7), 1109–1120 (2010). DOI 10.1016/j.clinph.2010.01.030Google Scholar
  50. 50.
    Treder, M.S., Blankertz, B.: (C)overt attention and visual speller design in an ERP-based brain–computer interface. Behav. Brain Funct. 6, 28 (2010). DOI 10.1186/1744-9081-6-28Google Scholar
  51. 51.
    Vidaurre, C., Sannelli, C., Müller, K.-R., Blankertz, B.: Machine-learning-based coadaptive calibration for brain–computer interfaces. Neural Comput. 23(3), 791–816 (2010). DOI 10.1162/NECO_a_00089Google Scholar
  52. 52.
    Volosyak, I., Valbuena, D., Malechka, T., Peuscher, J., Gräser, A.: Brain–computer interface using water-based electrodes. J. Neural Eng. 7(6), 066007 (2010). DOI 10.1088/1741-2560/7/6/066007Google Scholar
  53. 53.
    World Health Organization. International Classification of Functioning, Disability and Health: ICF. Geneva: World Health Organization (2001)Google Scholar
  54. 54.
    Zander, T.O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., Nijboer, F.: A dry EEG-system for scientific research and brain–computer interfaces. Front. Neurosci. 5, 53 (2011). DOI 10.3389/fnins.2011.00053Google Scholar
  55. 55.
    Zickler, C., Di Donna, V., Kaiser, V., Al-Khodairy, A., Kleih, S., Kübler, A., Malavasi, M., Mattia, D., Mongardi, S., Neuper, C., Rohm, M., Rupp, R., Staiger-Sälzer, P., Hoogerwerf, E.J.: Brain Computer Interaction Applications for People with Disabilities: Defining User Needs and User Requirements. In: Emiliani, P.L., Burzagli, L., Como, A., Gabbanini, F., Salimen, A.L. (eds.) Assistive Technology from Adapted Equipment to Inclusive Environments. AAATE 2009, Assistive Technology Research Series, vol. 25, pp. 185–189. IOS, Amsterdam (2009)Google Scholar
  56. 56.
    Zickler, C., Hösle, A., Franz, D., Staiger-Sälzer, P., Busch, G., Kübler.: A Brain Painting: Evaluation of performance and satisfaction by end users with severe disabilities. Poster presented at the TOBI workshop II, Rome, Italy, pp. 2–3 (2010)Google Scholar
  57. 57.
    Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E.M., Staiger-Sälzer, P., Hoogerwerf, E.J., Desideri, L., Mattia, D., Kübler, A.: A brain–computer interface as input channel for a standard assistive technology software. Clin. EEG Neurosci. 42(4), 236–244 (2011).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elisa Mira Holz
    • 1
  • Tobias Kaufmann
    • 1
  • Lorenzo Desideri
    • 2
  • Massimiliano Malavasi
    • 2
  • Evert-Jan Hoogerwerf
    • 2
  • Andrea Kübler
    • 1
  1. 1.Department of Psychology IUniversity of WürzburgWürzburgGermany
  2. 2.AIAS Bologna onlus, Ausilioteca AT Centre, Corte RoncatiBolognaItaly

Personalised recommendations