Enhancing Brainware Productivity through a Performance Tuning Workflow

  • Christian Iwainsky
  • Ralph Altenfeld
  • Dieter an Mey
  • Christian Bischof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7156)


Operation costs of high performance computers, like cooling and energy, drive HPC centers towards improving the efficient usage of their resources. Performance tuning through experts here is an indispensable ingredient to ensure efficient HPC operation. This ”brainware” component, in addition to software and hardware, is in fact crucial to ensure continued performance of codes in light of diversifying and changing hardware platforms. However, as tuning experts are a scarce and costly resource themselves, processes should be developed that ensure the quality of the performance tuning process. This is not to dampen human ingenuity, but to ensure that tuning effort time is limited to achieve a realistic substantial gain, and that code changes are accepted by users and made part of their code distribution. In this paper, we therefore formalize a service-based Performance Tuning Workflow to standardize the tuning process and to improve usage of tuning-expert time.


Code Change Tuning Process Performance Tune Improvement Report Tuning Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bischof, C., an Mey, D., Iwainsky, C.: Brainware for Green HPC. In: Ludwig, T. (ed.) Proceedings EnA-HPC 2011 (2011) (to appear)Google Scholar
  2. 2.
    Behr, M., Arora, D., Benedict, N.A., O’Neill, J.J.: Intel compilers on linux clusters. Intel Developer Services online publication (October 2002)Google Scholar
  3. 3.
    Zeng, P., Sarholz, S., Iwainsky, C., Binninger, B., Peters, N., Herrmann, M.: Simulation of Primary Breakup for Diesel Spray with Phase Transition. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 313–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Altenfeld, R., Apel, M., an Mey, D., Böttger, B., Benke, S., Bischof, C.: Parallelising Computational Microstructure Simulations for Metallic Materials with OpenMP. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 1–11. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca performance toolset architecture. Concurrency and Computation: Practice and Experience 22(6), 702–719 (2010)Google Scholar
  6. 6.
    Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Proceedings of the 2nd HLRS Parallel Tools Workshop, Stuttgart, Germany (July 2008)Google Scholar
  7. 7.
    Shende, S.S., Malony, A.D.: The tau parallel performance system. The International Journal of High Performance Computing Applications 20, 287–331 (2006)CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
    London, K., Moore, S., Mucci, P., Seymour, K., Luczak, R.: The papi cross-platform interface to hardware performance counters. In: Department of Defense Users Group Conference Proceedings, pp. 18–21 (2001)Google Scholar
  11. 11.
    Iwainsky, C., an Mey, D.: Comparing the Usability of Performance Analysis Tools. In: Cèsar, E., Alexander, M., Streit, A., Träff, J., Cèrin, C., Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.) Euro-Par 2008 Workshops. LNCS, vol. 5415, pp. 315–325. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Iwainsky
    • 1
  • Ralph Altenfeld
    • 2
  • Dieter an Mey
    • 1
  • Christian Bischof
    • 1
  1. 1.Center for Computing and CommunicationRWTH Aachen UniversityGermany
  2. 2.Access e.V.RWTH Aachen UniversityGermany

Personalised recommendations