An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

  • Wyatt Spear
  • Allen D. Malony
  • Chee Wai Lee
  • Scott Biersdorff
  • Sameer Shende
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7156)

Abstract

With increases in the scale of parallelism the dimensionality and complexity of parallel performance measurements has placed greater challenges on analysis tools. Performance visualization can assist in understanding performance properties and relationships. However, the creation of new visualizations in practice is not supported by existing parallel profiling tools. Users must work with presentation types provided by a tool and have limited means to change its design. Here we present an approach for creating new performance visualizations within an existing parallel profile analysis tool. The approach separates visual layout design from the underlying performance data model, making custom visualizations such as performance over system topologies straightforward to implement and adjust for various use cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Global cloud resolving model (gcrm), https://svn.pnl.gov/gcrm
  2. 2.
  3. 3.
  4. 4.
    Visualization toolkit (vtk), http://expression-tree.sourceforge.net/
  5. 5.
    Math expression string parser (mesp) (2004), http://expression-tree.sourceforge.net/
  6. 6.
  7. 7.
    Bell, R., Malony, A.D., Shende, S.: A portable, extensible, and scalable tool for parallel performance profile analysis. In: Proc. EUROPAR 2003 Conference, pp. 17–26 (2003)Google Scholar
  8. 8.
    Bhatele, A., Kale, L.V., Chen, N., Johnson, R.E.: A Pattern Language for Topology Aware Mapping. In: Workshop on Parallel Programming Patterns, ParaPLOP 2009 (June 2009)Google Scholar
  9. 9.
    Chen, J., et al.: Terascale direct numerical simulations of turbulent combustion using S3D. Computational Science and Discovery 2(1), 15001 (2009)CrossRefGoogle Scholar
  10. 10.
    Couch, A.: Categories and Context in Scalable Execution Visualization. Journal of Parallel and Distributed Computing 18(2), 195–204 (1993)CrossRefGoogle Scholar
  11. 11.
    De Rose, L., Pantano, M., Aydt, R., Shaffer, E., Schaeffer, B., Whitmore, S., Reed, D.: An approach to immersive performance visualization of parallel and wide-area distributed applications. In: Proceedings of the Eighth International Symposium on High Performance Distributed Computing, 1999, pp. 247–254 (1999)Google Scholar
  12. 12.
    Hackstadt, S., Malony, A., Mohr, B.: Scalable Performance Visualization of Data-Parallel Programs. In: Scalable High-Performance Computing Conference, pp. 342–349 (May 1994)Google Scholar
  13. 13.
    Heath, M., Etheridge, J.: Visualizing the Performance of Parallel Programs. IEEE Software 8(5), 29–39 (1991)CrossRefGoogle Scholar
  14. 14.
    Heath, M., Malony, A., Rover, D.: Parallel Performance Visualization: From Practice to Theory. IEEE Parallel and Distributed Technology: Systems and Technology 3(4), 44–60 (1995)CrossRefGoogle Scholar
  15. 15.
    Heath, M., Malony, A., Rover, D.: The Visual Display of Parallel Performance Data. Computer 28(4), 21–28 (1995)CrossRefGoogle Scholar
  16. 16.
    Jagode, H., Dongarra, J., Alam, S., Vetter, J., Spear, W., Malony, A.D.: A Holistic Approach for Performance Measurement and Analysis for Petascale Applications. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 686–695. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-01973-9_77 CrossRefGoogle Scholar
  17. 17.
    Shende, S., Malony, A.D.: The TAU Parallel Performance System. SAGE Publications (2006)Google Scholar
  18. 18.
    Sistare, S., Allen, D., Bowker, R., Jourdenais, K., Simons, J., Title, R.: A scalable debugger for massively parallel message-passing programs. IEEE Parallel and Distributed Technology: Systems and Applications Distributed Technology: Systems and Applications 2(2), 50–56 (1994)CrossRefGoogle Scholar
  19. 19.
    Traff, J.: Implementing the mpi process topology mechanism. In: SC Conference, p. 28 (2002)Google Scholar
  20. 20.
    Yanovich, J., Budden, R., Simmel, D.: Xt3dmon 3d visual system monitor for psc’s cray xt3 (2006), http://www.psc.edu/~yanovich/xt3dmon

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wyatt Spear
    • 1
  • Allen D. Malony
    • 1
  • Chee Wai Lee
    • 1
  • Scott Biersdorff
    • 1
  • Sameer Shende
    • 1
  1. 1.Department Computer and Information ScienceUniversity OregonEugeneUSA

Personalised recommendations