A Communication-Avoiding Thick-Restart Lanczos Method on a Distributed-Memory System

  • Ichitaro Yamazaki
  • Kesheng Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7155)

Abstract

The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. On a modern computer, communication can dominate the solution time of TRLan. To enhance the performance of TRLan, we develop CA-TRLan that integrates communication-avoiding techniques into TRLan. To study the numerical stability and solution time of CA-TRLan, we conduct numerical experiments using both synthetic diagonal matrices and matrices from the University of Florida sparse matrix collection. Our experimental results on up to 1,024 processors of a distributed-memory system demonstrate that CA-TRLan can achieve speedups of up to three over TRLan while maintaining numerical stability.

Keywords

thick-restart Lanczos communication-avoiding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai, Z., Hu, D., Reichel, L.: A Newton basis GMRES implementation. IMA Journal of Numerical Analysis 14, 563–581 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Carson, E., Knight, N., Demmel, J.: Hypergraph partitioning for computing matrix powers. In: The Proceedings of SIAM Workshop on Combinatorial Scientific Computing (2011)Google Scholar
  3. 3.
    Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential QR and LU factorizations. Technical Report UCB/EECS-2008-89, EECS Department, University of California, Berkeley (2008)Google Scholar
  4. 4.
    Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K.: Avoiding communication in sparse matrix computations. In: The Proceedings of IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–12 (2008)Google Scholar
  5. 5.
    Hoemmen, M.: Communication-avoiding Krylov subspace methods. PhD thesis, University of California, Berkeley (2010)Google Scholar
  6. 6.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255–281 (1950)MathSciNetGoogle Scholar
  7. 7.
    Parlett, B.: The symmetric eigenvalue problem. Classics in Applied Mathematics. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
  8. 8.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. Classics in Applied Mathematics. SIAM, Philadelphia (2003)Google Scholar
  9. 9.
    Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization requirements. SIAM J. Sci. Comput. 23, 2165–2182 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Vuduc, R., Demmel, J., Yelick, K.: OSKI: A library of automatically tuned sparse matrix kernels. In: Proc. SciDAC, J. Physics: Conf. Ser., vol. 16, pp. 521–530 (2005), http://bebop.cs.berkeley.edu/oski/
  11. 11.
    Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Mat. Anal. Appl. 22, 602–616 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Yamazaki, I., Bai, Z., Simon, H., Wand, L.-W., Wu, K.: Adaptive projection subspace dimension for the thick-restart Lanczos method. ACM Trans. Math. Softw. 37 (2010), https://codeforge.lbl.gov/projects/trlan/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ichitaro Yamazaki
    • 1
  • Kesheng Wu
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations