Weighted Lumpability on Markov Chains
Conference paper
- 10 Citations
- 505 Downloads
Abstract
This paper reconsiders Bernardo’s T-lumpability on continuous-time Markov chains (CTMCs). This notion allows for a more aggressive state-level aggregation than ordinary lumpability. We provide a novel structural definition of (what we refer to as) weighted lumpability, prove some elementary properties, and investigate its compatibility with linear real-time objectives. The main result is that the probability of satisfying a deterministic timed automaton specification coincides for a CTMC and its weigthed lumped analogue. The same holds for metric temporal logic formulas.
Keywords
continuous-time Markov chain bisimulation weighted lumpability deterministic timed automaton metric temporal logicPreview
Unable to display preview. Download preview PDF.
References
- 1.Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefGoogle Scholar
- 3.Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
- 4.Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC Model Checking of Linear Real-Time Objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 6.Bernardo, M.: Non-bisimulation-based Markovian behavioral equivalences. J. Log. Algebr. Program. 72(1), 3–49 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bernardo, M.: Towards State Space Reduction Based on T-Lumpability-Consistent Relations. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 64–78. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 8.Bernardo, M.: Uniform logical characterizations of testing equivalences for nondeterministic, probabilistic and Markovian processes. ENTCS 253(3), 3–23 (2009)MathSciNetGoogle Scholar
- 9.Bernardo, M., Botta, S.: A survey of modal logics characterising behavioural equivalences for non-deterministic and stochastic systems. Math. Structures in Comp. Sci. 18(1), 29–55 (2008)MathSciNetzbMATHGoogle Scholar
- 10.Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation, Université Paris 7, Paris, France (January 2009)Google Scholar
- 11.Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. of Appl. Prob. 31(1), 59–75 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-time Markov chains against timed automata specifications. In: LICS, pp. 309–318. IEEE Computer Society (2009)Google Scholar
- 13.Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)CrossRefGoogle Scholar
- 15.Katoen, J.-P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 16.Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
- 17.Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete, Timed and Continuous Behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Trakhtenbrot/Festschrift. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 18.Ouaknine, J., Worrell, J.: Some Recent Results in Metric Temporal Logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 19.Valmari, A., Franceschinis, G.: Simple O(m logn) Time Markov Chain Lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 20.Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace machines for observing continuous-time Markov chains. ENTCS 153(2), 259–277 (2006)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012