A Comparison of Performance Measures via Online Search

  • Joan Boyar
  • Kim S. Larsen
  • Abyayananda Maiti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)


Since the introduction of competitive analysis, a number of alternative measures for the quality of online algorithms have been proposed, but, with a few exceptions, these have generally been applied only to the online problem for which they were developed. Recently, a systematic study of performance measures for online algorithms was initiated [Boyar, Irani, Larsen: WADS 2009], first focusing on a simple server problem. We continue this work by studying a fundamentally different online problem, online search, and the Reservation Price Policies in particular. The purpose of this line of work is to learn more about the applicability of various performance measures in different situations and the properties that the different measures emphasize. We investigate the following analysis techniques: Competitive, Relative Worst Order, Bijective, Average, Relative Interval, and Random Order. In addition, we have established the first optimality proof for Relative Interval Analysis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies. In: 18th Symposium on Discrete Algorithms, pp. 229–237. Philadelphia, PA, USA (2007)Google Scholar
  2. 2.
    Al-Binali, S.: A risk-reward framework for the competitive analysis of financial games. Algorithmica 25(1), 99–115 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  4. 4.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for online algorithms. ACM Transactions on Algorithms 3(2), article 22(2007)Google Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Boyar, J., Irani, S., Larsen, K.S.: A Comparison of Performance Measures for Online Algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009), arXiv: 0806.0983v1 [cs.DS]CrossRefGoogle Scholar
  7. 7.
    Boyar, J., Larsen, K.S., Maiti, A.: A comparison of performance measures via online search. Tech. Rep. arXiv:1106.6136v1 [cs.DS], arXiv (2011)Google Scholar
  8. 8.
    Chen, G.H., Kao, M.Y., Lyuu, Y.D., Wong, H.K.: Optimal buy-and-hold strategies for financial markets with bounded daily returns. SIAM Journal on Computing 31(2) (2001)Google Scholar
  9. 9.
    Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing. Discrete Applied Mathematics 156(14), 2810–2816 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT News 36(3), 67–81 (2005)CrossRefGoogle Scholar
  11. 11.
    Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging algorithms. Theoretical Computer Science 410(38–40), 3694–3701 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    El-Yaniv, R.: Competitive solutions for online financial problems. ACM Computing Surveys 30(1), 28–69 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading online algorithms. Algorithmica 30(1), 101–139 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kenyon, C.: Best-fit bin-packing with random order. In: 7th Symposium on Discrete Algorithms, pp. 359–364 (1996)Google Scholar
  15. 15.
    Rothschild, M.: Searching for the lowest price when the distribution of prices is unknown. Journal of Political Economy 82(4), 689–711 (1974)CrossRefGoogle Scholar
  16. 16.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joan Boyar
    • 1
  • Kim S. Larsen
    • 1
  • Abyayananda Maiti
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations