Solving Generalized Optimization Problems Subject to SMT Constraints

  • Feifei Ma
  • Jun Yan
  • Jian Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)


In a classical constrained optimization problem, the logical relationship among the constraints is normally the logical conjunction. However, in many real applications, the relationship among the constraints might be more complex. This paper investigates a generalized class of optimization problems whose constraints are connected by various kinds of logical operators in addition to conjunction. Such optimization problems have been rarely studied in literature in contrast to the classical ones. A framework which integrates classical optimization procedures into the DPLL(T) architecture for solving Satisfiability Modulo Theories (SMT) problems is proposed. Two novel techniques for improving the solving efficiency w.r.t. linear arithmetic theory are also presented. Experiments show that the proposed techniques are quite effective.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007), CrossRefGoogle Scholar
  2. 2.
    Cheng, K.C., Yap, R.H.C.: Search space reduction and Russian doll search. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007) (2007) Google Scholar
  3. 3.
    Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability Modulo the Theory of Costs: Foundations and Applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006), CrossRefGoogle Scholar
  5. 5.
    Eén, N., Sorensson, N.: The MiniSat Page (2011),
  6. 6.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hooker, J.N.: Logic, optimization, and constraint programming. INFORMS Journal on Computing 14, 295–321 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Hooker, J.N., Osorio, M.A.: Mixed logical-linear programming. Discrete Appl. Math. 96-97, 395–442 (October 1999)Google Scholar
  10. 10.
    Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)Google Scholar
  11. 11.
    Ma, F., Liu, S., Zhang, J.: Volume Computation for Boolean Combination of Linear Arithmetic Constraints. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 453–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  13. 13.
    Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Feifei Ma
    • 1
  • Jun Yan
    • 1
  • Jian Zhang
    • 1
    • 2
  1. 1.Institute of SoftwareChinese Academy of SciencesChina
  2. 2.State Key Laboratory of Computer ScienceChina

Personalised recommendations