On Multiprocessor Temperature-Aware Scheduling Problems

  • Evripidis Bampis
  • Dimitrios Letsios
  • Giorgio Lucarelli
  • Evangelos Markakis
  • Ioannis Milis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)

Abstract

We study temperature-aware scheduling problems under the model introduced by Chrobak et al. in [9], where unit-length jobs of given heat contributions are to be scheduled on a set of parallel identical processors. We consider three optimization criteria: makespan, maximum temperature and (weighted) average temperature. On the positive side, we present polynomial time approximation algorithms for the minimization of the makespan and the maximum temperature, as well as, optimal polynomial time algorithms for minimizing the average temperature and the weighted average temperature. On the negative side, we prove that there is no \((\frac{4}{3}-\epsilon)\)-approximation algorithm for the problem of minimizing the makespan for any ε > 0, unless \({\cal P}={\cal NP}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53, 86–96 (2010)CrossRefGoogle Scholar
  2. 2.
    Albers, S.: Algorithms for dynamic speed scaling. In: STACS 2011. LIPIcs, vol. 9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  3. 3.
    Alon, N., Azar, Y., Woeginger, G., Yadid, T.: Approximation schemes for scheduling on parallel machines. Journal of Scheduling 1, 55–66 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Atkins, L., Aupy, G., Cole, D., Pruhs, K.: Speed Scaling to Manage Temperature. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 9–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), Article 3 (2007)Google Scholar
  6. 6.
    Birks, M., Cole, D., Fung, S.P.Y., Xue, H.: Online Algorithms for Maximizing Weighted Throughput of Unit Jobs with Temperature Constraints. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 319–329. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Birks, M., Fung, S.P.Y.: Temperature Aware Online Scheduling with a Low Cooling Factor. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 105–116. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Birks, M., Fung, S.P.Y.: Temperature Aware Online Algorithms for Scheduling Equal Length Jobs. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 330–342. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for Temperature-Aware Task Scheduling in Microprocessor Systems. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 120–130. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–426 (1969)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM SIGACT News 36, 63–76 (2005)CrossRefGoogle Scholar
  13. 13.
    Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice-Hall (1995)Google Scholar
  14. 14.
    Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic thermal management through task scheduling. In: ISPASS 2008, pp. 191–201. IEEE Computer Society (2008)Google Scholar
  15. 15.
    Zhang, S., Chatha, K.S.: Approximation algorithm for the temperature-aware scheduling problem. In: ICCAD 2007, pp. 281–288. IEEE Press (2007)Google Scholar
  16. 16.
    Zhou, X., Yang, J., Chrobak, M., Zhang, Y.: Performance-aware thermal management via task scheduling. ACM Trans. Archit. Code Optimizat. 7, 1–31 (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evripidis Bampis
    • 1
  • Dimitrios Letsios
    • 1
    • 2
  • Giorgio Lucarelli
    • 1
    • 2
  • Evangelos Markakis
    • 3
  • Ioannis Milis
    • 3
  1. 1.LIP6Université Pierre et Marie CurieFrance
  2. 2.IBISCUniversité d’ ÉvryFrance
  3. 3.Dept. of InformaticsAthens University of Economics and BusinessGreece

Personalised recommendations