Computing Maximum Non-crossing Matching in Convex Bipartite Graphs

  • Danny Z. Chen
  • Xiaomin Liu
  • Haitao Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7285)

Abstract

We consider computing a maximum non-crossing matching in convex bipartite graphs. For a convex bipartite graph of n vertices and m edges, we present an O(nlogn) time algorithm for finding a maximum non-crossing matching in the graph. The previous best algorithm for this problem takes O(m + nlogn) time. Since m = Θ(n 2) in the worst case, our result improves the previous solution for large m.

Keywords

Bipartite Graph Incident Edge Binary Search Tree Search Operation Left Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry — Algorithms and Applications, 3rd edn. Springer, Berlin (2008)MATHGoogle Scholar
  2. 2.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press (2001)Google Scholar
  3. 3.
    Edmonds, J.: Paths, trees and flowers. Canad J. Math. 17, 449–467 (1965)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Theory of Computing Systems 10(1), 99–127 (1977)MATHGoogle Scholar
  5. 5.
    Even, S., Tarjan, R.: Network flow and testing graph connectivity. SIAM J. Comput. 4, 507–518 (1975)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fredman, M.: On computing the length of longest increasing subsequences. Discrete Mathematics 11(1), 29–35 (1975)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30, 209–221 (1985)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gabow, H.: An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. Journal of the ACM 23, 221–234 (1976)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Glover, F.: Maximum matching in a convex bipartite graph. Naval Res. Logist. Quart. 14, 313–316 (1967)MATHCrossRefGoogle Scholar
  10. 10.
    Hopcroft, J., Karp, R.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. on Comput. 2(4), 225–231 (1973)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Lipski Jr., W., Preparata, F.P.: Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems. Acta Informatica 15(4), 329–346 (1981)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kajitami, Y., Takahashi, T.: The noncross matching and applications to the 3-side switch box routing in VLSI layout design. In: Proc. International Symposium on Circuits and Systems, pp. 776–779 (1986)Google Scholar
  13. 13.
    Kuhn, H.: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liang, Y., Blum, N.: Circular convex bipartite graphs: Maximum matching and Hamiltonian circuits. Information Processing Letters 56, 215–219 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Malucelli, F., Ottmann, T., Pretolani, D.: Efficient labelling algorithms for the maximum noncrossing matching problem. Discrete Applied Mathematics 47(2), 175–179 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Micali, S., Vazirani, V.: An \(O(\sqrt{|V|} |E|)\) algorithm for finding maximum matching in general graphs. In: Proc. of the 21st Annual Symposium on Foundations of Computer Science, pp. 17–27 (1980)Google Scholar
  17. 17.
    Steiner, G., Yeomans, J.: A linear time algorithm for maximum matchings in convex, bipartite graphs. Computers and Mathematics with Applications 31(2), 91–96 (1996)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Widmayer, P., Wong, C.: An optimal algorithm for the maximum alignment of terminals. Information Processing Letters 10, 75–82 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Danny Z. Chen
    • 1
  • Xiaomin Liu
    • 1
  • Haitao Wang
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations