Advertisement

Turing: Then, Now and Still Key

  • Kieran Greer
Part of the Studies in Computational Intelligence book series (SCI, volume 427)

Abstract

This paper looks at Turing’s postulations about Artificial Intelligence in his paper ‘Computing Machinery and Intelligence’, published in 1950. It notes how accurate they were and how relevant they still are today. This paper notes the arguments and mechanisms that he suggested and tries to expand on them further. The paper however is mostly about describing the essential ingredients for building an intelligent model and the problems related with that. The discussion includes recent work by the author himself, who adds his own thoughts on the matter that come from a purely technical investigation into the problem. These are personal and quite speculative, but provide an interesting insight into the mechanisms that might be used for building an intelligent system.

Keywords

Artificial Intelligence Intelligence Modelling Alan Turing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fu, L.: Knowledge Discovery based on Neural Networks. Communications of the ACM 42(11), 47–50 (1999)CrossRefGoogle Scholar
  2. 2.
    Grassé, P.P.: La reconstruction dun id et les coordinations internidividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essais d’Interprétation du Comportment des Termites Constructeurs, Insectes Sociaux 6, 41–84 (1959)Google Scholar
  3. 3.
    Greer, K.: Symbolic Neural Networks for Clustering Higher-Level Concepts. NAUN International Journal of Computers 5(3), 378–386 (2011); extended version of the WSEAS/EUROPMENT International Conference on Computers and Computing (ICCC 2011)MathSciNetGoogle Scholar
  4. 4.
    Greer, K.: A Cognitive Model for Learning and Reasoning over Arbitrary Concepts. In: The 2nd International Symposium on Knowledge Acquisition and Modeling (KAM 2009), Wuhan, China, November 30 – December 1, pp. 253–256 (2009)Google Scholar
  5. 5.
    Greer, K.: Thinking Networks – the Large and Small of it: Autonomic and Reasoning Processes for Information Networks (2008) ISBN: 1440433275, LuLu.com, books.google.com
  6. 6.
    Grossberg, S., Carpenter, G.A., Ersoy, B.: Brain Categorization: Learning, Attention, and Consciousness. In: Proceedings of Intemational Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, pp. 1609–1614 (2005)Google Scholar
  7. 7.
    Gurney, K.: An Introduction To Neural Networks. Taylor and Francis (1997), books.google.com
  8. 8.
    Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (2004)Google Scholar
  9. 9.
    Hebb, D.O.: The Organisation of Behaviour (1994)Google Scholar
  10. 10.
    Hildreth, P.J., Kimble, C.: The duality of knowledge. Information Research 8(1), paper no. 142 (2002), http://InformationR.net/ir/8-1/paper142.html
  11. 11.
    Holland, J.: Hidden Order: How Adaptation Builds Complexity. Perseus, Reading (1995)Google Scholar
  12. 12.
    IBM. An Architectural Blueprint for Autonomic Computing. IBM and Autonomic Computing (2003)Google Scholar
  13. 13.
    Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117, 277–296 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990) ISSN: 0018-9219CrossRefGoogle Scholar
  15. 15.
    Mano, J.-P., Bourjot, C., Lopardo, G., Glize, P.: Bio-inspired Mechanisms for Artificial Self-organised Systems. Informatica 30, 55–62 (2006)Google Scholar
  16. 16.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Minsky, M.: Logical vs. Analogical, or Symbolic vs. Connectionist, or Neat vs. Scruffy. In: Winston, P.H. (ed.) Artificial Intelligence at MIT, Expanding Frontiers, vol. 1. MIT Press (1990); Reprinted in AI Magazine (Summer 1991)Google Scholar
  18. 18.
    Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Communications of the ACM 19(3), 113–126 (1976)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nikolopoulos, C.: Expert Systems: Introduction to First and Second Generation and Hybrid Knowledge Based Systems. Marcel Dekker, Inc., New York (1997) ISBN:0824799275Google Scholar
  20. 20.
    Rich, E., Knight, K.: Artificial Intelligence. McGraw Hill, Inc. (1991)Google Scholar
  21. 21.
    Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Berlin (1996), books.google.com Google Scholar
  22. 22.
    Turing, A.: Computing Machinery and Intelligence. Mind LIX (236), 433–460 (1950) ISSN 0026-4423 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vogels, T.P., Kanaka Rajan, K., Abbott, L.F.: Neural Network Dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005)CrossRefGoogle Scholar
  24. 24.
    Weisbuch, G.: The Complex Adaptive Systems Approach to Biology. Evolution and Cognition 5(1), 1–11 (1999)Google Scholar
  25. 25.
    Widrow, B., Lehr, M.: 30 Years of adaptive neural networks: perceptron. Proc. IEEE Madaline and Backpropagation 78(9), 1415–1442 (1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Distributed Computing SystemsBelfastUK

Personalised recommendations