Multi-objective Simulated Annealing Algorithm for Partner Selection in Virtual Enterprises

  • Hisham M. Abdelsalam
  • Amany M. Mohamed
Part of the Studies in Computational Intelligence book series (SCI, volume 427)


Virtual Enterprise (VE) is a temporary alliance of autonomous enterprises formed to act together to share skills or core competencies and resources in order to respond to a market opportunity. The success of VE strongly depends on its composition, so partner selection can be considered as the most important problem in VE. This paper presents and solves a model for the partner selection problem in VEs that considers two main evaluation criteria; project completion time and total cost. To do so, the paper uses a multi-objective algorithm, namely Pareto Simulated Annealing (PSA). Results showed improved performance of PSA compared to the Tabu Search algorithm used in a recent study.


Virtual Enterprises Partner Selection Pareto Simulated Annealing multi-objective optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, H., Zhu, Y., Hu, K., Li, X.: Virtual Enterprise Risk management Using Artificial Intelligence. Mathematical Problems in Engineering 2010, Article ID 572404, 20 pages (2010), doi:10.1155/2010/572404Google Scholar
  2. 2.
    Gao, F., Cu, G., Zhao, Q., Liu, H.: Application of Improved Discrete Particle Swarm Algorithm in Partner Selection of Virtual Enterprise. International Journal of Computer Science and Network Security 6(3), 208–212 (2006)Google Scholar
  3. 3.
    Lu, F.-Q., Huang, M., Ching, W.-K., Wang, X.-W., Sun, X.-L.: Multi-swarm particle swarm optimization based risk management model for virtual enterprise. In: Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC 2009), Shanghai, China, pp. 387–392 (2009)Google Scholar
  4. 4.
    Crispima, J.A., Sousa, J.P.: Partner selection in virtual enterprises. International Journal of Production Research 48(3), 683–707 (2010)CrossRefGoogle Scholar
  5. 5.
    Simona, D., Raluca, P.: Intelligent modeling method based on genetic algorithm for partner selection in virtual organizations. Business and Economic Horizons 5(2), 23–34 (2011)Google Scholar
  6. 6.
    Huang, B., Gao, C., Chen, L.: Partner selection in a virtual enterprise under uncertain information about candidates. Expert Systems with Applications 38(9), 11305–11310 (2011)CrossRefGoogle Scholar
  7. 7.
    Talluri, S., Baker, R.C.: A Quantitative Framework for Designing Efficient Business Process Alliances. In: Proceedings of International Conference on Engineering Management, pp. 656–661. IEEE Engineering Management Society Press, Canada (1996)Google Scholar
  8. 8.
    Wu, N., Mao, N., Qian, Y.M.: An Approach to Partner Selection in Agile Manufacturing. Journal of Intelligent Manufacturing 10(7), 519–529 (1999)CrossRefGoogle Scholar
  9. 9.
    Wu, N., Su, P.: Selection of partners in virtual enterprise paradigm. Robotics and Computer Integrated Manufacturing 21(2), 119–131 (2005)CrossRefGoogle Scholar
  10. 10.
    Su-ping, Nai-Qi, W., ZhaoQin, Y., Qiang, Y.: The Improved Genetic Algorithm for Partner Selection and Optimization. Systems Engineering Theory & Practice 12, 85–91 (2006)Google Scholar
  11. 11.
    Ko, C.S., Kim, T., Hwang, H.: External partner selection using tabu search heuristics in distributed manufacturing. International Journal of Production Research 39(17), 3959–3974 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ip, W.H., Huang, M., Yung, K.L., et al.: Genetic algorithm solution for a risk based partner selection problem in a virtual enterprise. Computers & Operations Research 30(2), 213–231 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Yu, W., Feng, Z., Hua, G., Jing, Z.: The Partner Selection in Virtual Enterprise Based on BDI Agent. International Journal of Digital Content Technology and its Applications 4(9) (2010)Google Scholar
  14. 14.
    Zeng, Z.B., Li, Y., Zhu, W.X.: Partner selection with a due date constraint in virtual enterprises. Applied Mathematics and Computation 175(2), 1353–1365 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bu, Y.-P., Zhou, W., Yu, J.-S.: A Discrete PSO Algorithm for Partner Selection of Virtual Enterprise. In: Second International Symposium on Intelligent Information Technology Application, IITA 2008, pp. 814–817 (2009)Google Scholar
  16. 16.
    Ebrahim, N.A., Ahmed, S., Taha, Z.: Critical factors for new product developments in SMEs virtual team. African Journal of Business Management 4(11), 2247–2257 (2010)Google Scholar
  17. 17.
    Hanoun, S., Nahavandi, S., Kull, H.: Pareto Archived Simulated Annealing for Single Machine Job Shop Scheduling with Multiple Objectives. In: The Sixth International Multi-Conference on Computing in the Global Information Technology, pp. 99–104 (2011)Google Scholar
  18. 18.
    Konak, A., David, W.C., Alice, E.S.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91(9), 992–1007 (2006)CrossRefGoogle Scholar
  19. 19.
    Le, K., Landa-Silva, D., Li, H.: An Improved Version of Volume Dominance for Multi-Objective Optimisation. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 231–245. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural Multidisciplinary Optimization 26(6), 369–395 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Haidine, A., Lehnert, R.: Multi-Case Multi-Objective Simulated Annealing (MC-MOSA): New Approach to Adapt Simulated Annealing to Multi-objective Optimization. World Academy of Science, Engineering and Technology 48, 705–713 (2008)Google Scholar
  22. 22.
    Jaszkiewicz, A.: Multiple ObjectiveMetaheuristic Algorithms for Combinatorial Optimization, Habilitation Thesis 360, Poznan University of Technology, Poznan, Poland (2001)Google Scholar
  23. 23.
    Fenghua, D., Xiaonian, H.: On Open Vehicle Routing Problem with Soft Time Windows and Tabu Search. In: Logistics Research and Practice in China-Proceedings of 2008 International Conference on Logistics Engineering and Supply Chain (2008)Google Scholar
  24. 24.
    Schmidt, K.: Using tabu search to solve the job shop scheduling problem with sequence dependent setup times. Master’s thesis, Brown University, USA (2001)Google Scholar
  25. 25.
    Dell’Amico, M., Trubian, M.: Applying tabu search to the job-shop scheduling Problem. Annals of Operations Research 41, 231–252 (1993)zbMATHCrossRefGoogle Scholar
  26. 26.
    Eles, P.: Heuristic Algorithms for Combinatorial Optimization Problems Tabu Search. Department of Computer and Information Science (IDA), Linköpings universitet (2010),
  27. 27.
    Schneider, U.: A Tabu Search Tutorial Based on a Real-World Scheduling Problem. Central European Journal of Operations Research 19, 467–493 (2010)CrossRefGoogle Scholar
  28. 28.
    Metselaar, C., Dael, R.: Organisations Going Virtual. AI & Society 13, 200–209 (1999)CrossRefGoogle Scholar
  29. 29.
    Lee, S., Allmen, P.V., Fink, W., Petropoulos, A.E., Terrile, R.J.: Comparison of Multi-Objective Genetic Algorithms in Optimizing Q-Law Low-Thrust Orbit Transfers. In: GECCO, Washington, DC, USA, June 25-29 (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Operations Research and Decision Support Department, Faculty of Computers and InformationCairo UniversityCairoEgypt
  2. 2.Decision Support and Future Studies Center, Faculty of Computer and InformationCairo UniversityCairoEgypt

Personalised recommendations