Decision Incorporation in Meta-heuristics to Cope with Decision Scheduling Problems

  • Yacine LaalaouiEmail author
  • R. B. Ahmad
Part of the Studies in Computational Intelligence book series (SCI, volume 427)


The halting problem is one of the most important Turing’s discoveries. It is a decision problem and it consists of reporting whether a given program P with some input data would stop or run forever. This problem was proved by Turing to be undecidable. This means that the relevant algorithm to solve this problem doesn’t exist. In this paper, we will show the application of this problem when the program P is a meta-heuristic technique and the input data is a decision scheduling problem. Further, we will also describe an efficient technique to solve the halting problem in this application case.


the halting problem meta-heuristics decision scheduling problems steady-state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, M.: Computability and Unsolvability. Mcgraw-Hill Series in Information Processing and Computers (1985) ISBN: 0486614719Google Scholar
  2. 2.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series. 2 43, 544–546 (1937)CrossRefGoogle Scholar
  3. 3.
    Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling and Planning. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier Publisher (2006) ISBN 1574-6525Google Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. USA Freeman, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Xu, J., Lam, K.-Y.: Integrating RunTime Scheduling and Preruntime Scheduling of Real-Time Processes. In: Proc. 23rd IFAC/ IFIP Workshop on Real-Time Programming (June 1998)Google Scholar
  6. 6.
    Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 12, 343–362 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bruker, P.: Scheduling Algorithms, 5th edn. Springer (2006) ISBN: 978-3-540-69515-8Google Scholar
  8. 8.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science Journal 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the TSP. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  10. 10.
    Laalaoui, Y., Drias, H.: ACO Approach with Learning for Preemptive Scheduling of Real-Time Task. The International Journal of Bio-Inspired Computing (IJBIC) 2(6) (2010)Google Scholar
  11. 11.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM 20(1), 46–61 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Glover, F.: Tabu Searcch - Part I. ORSA Journal on Computing 1(3), 190–206 (1989)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, Y., Saksena, M.: Scheduling Fixed-Priority Tasks with Preemption Threshold. In: 6th International Conference on Real-Time Computing Systems and Applications (RTCSA 1999), pp. 328–335 (1999)Google Scholar
  14. 14.
    Balas, E., Lancia, G., Serafini, P., Vazacopoulos, A.: Job Shop Scheduling With Deadlines. Journal of Combinatorial Optimization 1, 329–353 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sadeh, N., Fox, M.S.: Variable and value ordering heuristics for the job shop scheduling and constraint satisfaction problem. The Journal of Artificial Intelligence 86(1), 1–41 (1996)CrossRefGoogle Scholar
  16. 16.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006) ISBN 1574-6525Google Scholar
  17. 17.
    Van Beek, P.: Backtracking techniques for Constraint Satisfaction Problems. In: Rossi, F., Van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 4, pp. 85–118. Elsevier (2006)Google Scholar
  18. 18.
    Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence 58(1-3), 161–205 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Safrankova, J., Pavlu, J.: Recent Development in Automatic Parameter Tuning for Metaheuristics. In: Proceeding of the 19th Annual Conference of Doctoral Students, WDS 2010, Prague, pp. 54–63 (2010)Google Scholar
  20. 20.
    Dreo, J.: Using performance fronts for parameter setting of stochastic metaheuristics. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference, GECCO 2009, Montreal Quebec, Canada, pp. 2197–2200 (2009)Google Scholar
  21. 21.
    Dobslaw, F.: Iteration-wise parameter learning. In: IEEE Congress on Evolutionary Computation, New Orleans, LA, USA, pp. 455–462.Google Scholar
  22. 22.
    Baker, T.: A Comparison of Global and Partitioned EDF Schedulability Tests for Multiprocessors. Technical Report, Florida State University Dept. of Computer Science Tallahassee, FL 32306 USA (2005)Google Scholar
  23. 23.
    Xu, J., Parnas, D.: On satisfying timing constraints in hard-real-time systems. IEEE Transaction on Software Engineering 19, 70–84 (1993)CrossRefGoogle Scholar
  24. 24.
    Korf, R.: Real-Time Heuristic Search. Artificial Intelligence 42(2-3), 189–211 (1990)zbMATHCrossRefGoogle Scholar
  25. 25.
    Bulitko, V., Lee, G.: Learning in Real-Time Search: A Unifying Framework. Journal of Artificial Intelligence Research 25, 119–157 (2006)zbMATHGoogle Scholar
  26. 26.
    Frederickson, G.N.: Scheduling unit-time tasks with integer release times and deadlines. Information Processing Letters 16, 171–173 (1983)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.UniMAP UniversityKangarMalaysia

Personalised recommendations