7.5 Abundant Marine Calcium Sulphates: Radical Change of Seawater Sulphate Reservoir and Sulphur Cycle

  • Harald Strauss
  • Victor A. Melezhik
  • Marlene Reuschel
  • Anthony E. Fallick
  • Aivo Lepland
  • Dmitry V. Rychanchik
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

The modern (pre-industrial) ocean is characterised by a concentration of dissolved sulphate of 28 mM with little variability in its horizontal or vertical distribution. This homogeneity is a consequence of the long residence time of sulphate of some 25 Ma in comparison to the present ocean mixing time of 1,000–2,000 years (e.g. Holland 1984).

Keywords

Gypsum Crystal Fennoscandian Shield Seawater Sulphate Sedimentary Sulphide Evaporite Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879CrossRefGoogle Scholar
  2. Bekker A, Eriksson KA (2003) Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland Breakup. Precambrian Res 120:327–364CrossRefGoogle Scholar
  3. Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325CrossRefGoogle Scholar
  4. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120CrossRefGoogle Scholar
  5. Bekker A, Karhu JA, Kaufman AJ (2006) Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Res 148:145–180CrossRefGoogle Scholar
  6. Brunner B, Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulphate reducing bacteria. Geochim Cosmochim Acta 69:4759–4771CrossRefGoogle Scholar
  7. Buick R, Dunlop JSR (1990) Evaporitic sediments of early Archean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277CrossRefGoogle Scholar
  8. Busenberg E, Plummer LN (1985) Kinetic and thermodynamic factors controlling the distribution of SO42− and Na+ in calcites and selected aragonites. Geochim Cosmochim Acta 49:713–725CrossRefGoogle Scholar
  9. Cameron EM (1983) Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrian oceans. Nature 304:54–56CrossRefGoogle Scholar
  10. Cameron EM, Hall GEM, Veizer J, Krouse HR (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser River, British Columbia, Canada. Chem Geol 122:149–169CrossRefGoogle Scholar
  11. Canfield DE (2001) Biogeochemistry of sulphur isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, Reviews in mineralogy and geochemistry, vol. 53. Geological Society of America, Washington, DC, pp 607–633Google Scholar
  12. Canfield DE (2004) The evolution of the Earth surface sulfur reservoir. Am J Sci 304:839–861CrossRefGoogle Scholar
  13. Canfield DE, Farquhar J, Zerkle AL (2010) High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38:415–418CrossRefGoogle Scholar
  14. Chandler FW (1988) Diagenesis of sabkha-related, sulphate nodules in the Early Proterozoic Gordon Lake Formation, Ontario, Canada. Carbon Evapor 3:75–94CrossRefGoogle Scholar
  15. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:190–260CrossRefGoogle Scholar
  16. Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. Society of Sedimentary Geologists, Tulsa, p 265Google Scholar
  17. Detmers J, Brüchert V, Habicht KS, Küver J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894CrossRefGoogle Scholar
  18. Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J (2008) Organic haze, glaciations and multiple sulphur isotopes in the Mid-Archean Era. Earth Planet Sci Lett 269:29–40CrossRefGoogle Scholar
  19. El Tabakh M, Grey C, Pirajno F, Schreiber BC (1999) Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: origin and significance. Geology 27:871–874CrossRefGoogle Scholar
  20. Evans DAD (2006) Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444:51–55CrossRefGoogle Scholar
  21. Fallick AE, Melezhik VA, Simonson B (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 169–188CrossRefGoogle Scholar
  22. Fallick AE, Melezhik VA, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with banded iron formations. In: Neves L et al (eds) Modelacao de Sistemas. Geologicos, Universidade de Coimbra, Portugal, pp 57–71Google Scholar
  23. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758CrossRefGoogle Scholar
  24. Garrels RM, Lerman A (1984) Coupling of the sedimentary sulfur and carbon cycles – an improved model. Am J Sci 284:989–1007CrossRefGoogle Scholar
  25. Gee RD, Grey K (1993) Proterozoic rocks on the Glengarry 1:250,000 sheet: stratigraphy, structure and stromatolite biostratigraphy. Geol Surv West Aust Rep 41:30Google Scholar
  26. Goddéris Y, Veizer J (2000) Tectonic control of chemical and isotopic composition of ancient oceans: the impact of continental growth. Am J Sci 300:434–461CrossRefGoogle Scholar
  27. Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell P, Martin A (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million year old rocks of the Belingwe belt, Zimbabwe. Proc R Soc Lond B268:113–119CrossRefGoogle Scholar
  28. Grossman EL, Mii H-S, Zhang C, Yancey TE (1996) Chemical variation in Pennsylvanian brachiopod shells – diagenetic, taxonomic, microstructural, and seasonal effects. J Sed Res 66:1011–1022Google Scholar
  29. Guliy VN, Wada H (2003) Macro and microvariations of isotopic composition of carbon and oxygen of carbonates from the Precambrian of the Aldan Shield. Geochemistry 5:482–491 (in Russian)Google Scholar
  30. Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402CrossRefGoogle Scholar
  31. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374CrossRefGoogle Scholar
  32. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283CrossRefGoogle Scholar
  33. Hardie LA, Shinn EA (1986) Carbonate depositional environments modern and ancient, part 3: tidal flats. Colo Sch Mines Q 81:1–74Google Scholar
  34. Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E (2006) Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr Palaeoclimatol Palaeoecol 240:3–46CrossRefGoogle Scholar
  35. Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. R Soc Lond Philos Trans B Biol Sci B 361:931–950CrossRefGoogle Scholar
  36. Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 93–134Google Scholar
  37. Holland HD (1984) The chemical evolution of the atmosphere and oceans, Princeton series in geochemistry. Princeton University Press, Princeton, p 582Google Scholar
  38. Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22Google Scholar
  39. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci B361:903–915Google Scholar
  40. Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates. Geochim Cosmochim Acta 66:3733–3756CrossRefGoogle Scholar
  41. Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55CrossRefGoogle Scholar
  42. Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645CrossRefGoogle Scholar
  43. Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838CrossRefGoogle Scholar
  44. Kampschulte A, Strauss H (2004) The sulphur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulphate in carbonates. Chem Geol 204:255–286CrossRefGoogle Scholar
  45. Kendall AC (1984) Evaporites. In: Walker RG (ed) Facies models, vol 1, 2nd edn, Geoscience Canada reprint series. Geological Association of Canada, Toronto, pp 259–296Google Scholar
  46. Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011a) Section of the Onega structure based on data from OPH (Onega parametric hole). In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (geology, tectonics, deep structure and minerageny). Karelian Science Centre, Petrozavodsk, pp 172–189 (in Russian)Google Scholar
  47. Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011b) Carbon, oxygen and sulphur isotopic composition of rocks from Ludicovian and Jatulian Super-Horizons. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (geology, tectonics, deep structure and minerageny). Karelian Science Centre, Petrozavodsk, pp 250–255 (in Russian)Google Scholar
  48. Kump LR (1989) Alternative modeling approaches to the geochemical cycles of carbon, sulfur and strontium isotopes. Am J Sci 289:390–410CrossRefGoogle Scholar
  49. Lambert IB, Donnelly TH, Dunlop JSR, Groves DI (1978) Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276:808–810CrossRefGoogle Scholar
  50. Lindsay JF, Brasier MD (2002) Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of western Australian basins. Precambrian Res 114:1–34CrossRefGoogle Scholar
  51. Lyons TW, Gill BC (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99CrossRefGoogle Scholar
  52. Master S, Bekker A, Hofmann A (2010) A review of the stratigraphy and geological setting of the Palaeoproterozoic Magondi Supergroup, Zimbabwe – type locality for the Lomagundi carbon isotope excursion. Precambrian Res 182:254–273CrossRefGoogle Scholar
  53. Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB (2005) Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmosheric oxygen and local amplification of the δ13C excursion. Terra Nova 17:141–148CrossRefGoogle Scholar
  54. Melezhik VA, Fallick AE, Rychanchik DV, FAR-DEEP Drilling Team (2011) Abundant marine sulphate in the Palaeoproterozoic: models come and go, but the rock record endures. In: Goldschmidt conference, Prague, 14–19 Aug 2011Google Scholar
  55. Morozov AF, Hahaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Commun Acad Sci 435(2):230–233 (in Russian)Google Scholar
  56. Ohmoto H (1999) When did the Earth’s atmosphere become oxic? Geochem News 93:12–27Google Scholar
  57. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911CrossRefGoogle Scholar
  58. Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulphur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212CrossRefGoogle Scholar
  59. Pavlov AA, Kasting J (2002) Mass-independent fractionation of sulphur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41CrossRefGoogle Scholar
  60. Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotope composition of Cenozoic seawater sulfate. Science 282:1459–1462CrossRefGoogle Scholar
  61. Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30:747–750CrossRefGoogle Scholar
  62. Paytan A, Kastner M, Campbell D, Thiemens MH (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–1665CrossRefGoogle Scholar
  63. Philippot P, van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537CrossRefGoogle Scholar
  64. Pirajno F, Occhipinti SA, Swager CP (1998) Geology and tectonic evolution of Palaeoproterozoic Bryah, Padbury and Yerrida (formerly Glengarry Basin), Western Australia: implications for the history of the south-central Capricorn Orogen. Precambrian Res 90:119–140CrossRefGoogle Scholar
  65. Pirajno F, Jones JA, Hocking RM, Halilovic J (2004) Geology and tectonic evolution of Palaeoproterozoic basins of the eastern Capricorn Orogen, Western Australia. Precambrian Res 128:315–342CrossRefGoogle Scholar
  66. Pope MC, Grotzinger JP (2003) Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada; record of cratonic-scale salinity crisis. J Sed Res 73:280–295CrossRefGoogle Scholar
  67. Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133CrossRefGoogle Scholar
  68. Reuschel M, Melezhik VA, Lepland A, Fallick AE, Strauss H (2012) Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Res 192:78–88CrossRefGoogle Scholar
  69. Russell J (1992) Investigation of the potential of Pb-Pb radiometric dating for the direct age determination of carbonates. Ph.D. thesis, University of OxfordGoogle Scholar
  70. Schreiber BC, Babel M, Lugli S (2007) Introduction and overview. In: Schreiber BC, Lugli S, Babel M (eds) Evaporites through space and time, vol 285, Geological Society Special Publications. Geological Society, London, pp 1–13Google Scholar
  71. Schröder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS (2008) Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the 2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20:108–117CrossRefGoogle Scholar
  72. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81CrossRefGoogle Scholar
  73. Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391CrossRefGoogle Scholar
  74. Sim MS, Bosak T, Ono S (2011) Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77CrossRefGoogle Scholar
  75. Simon L, Goddéris Y, Buggisch W, Strauss H, Joachimski MM (2007) Modeling the carbon and sulfur isotope compositions of marine sediments: climate evolution during the Devonian. Chem Geol 246:19–38CrossRefGoogle Scholar
  76. Staudt WJ, Schoonen MAA (1995) Sulfate incorporation into sedimentary carbonates. In: Vairavamurthy MA, Schoonen MAA (eds) Geochemical transformations of sedimentary sulfur. American Chemical Society, Washington, pp 332–345CrossRefGoogle Scholar
  77. Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol 132:97–118CrossRefGoogle Scholar
  78. Strauss H (2002) The sulfur isotopic composition of Precambrian sedimentary sulfides – seawater chemistry and biological evolution. In: Altermann W, Corcoran P (eds) Precambrian sedimentary environments: a modern approach to ancient depositional systems, Special publications of the international association of sedimentologists, vol 33. Blackwell Science, Oxford, pp 67–105Google Scholar
  79. Strauss H (2003) The early Archean sulfur cycle as evident from sulfur isotopes. Precambrian Res 126:349–361CrossRefGoogle Scholar
  80. Thomazo C, Pinti D, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678CrossRefGoogle Scholar
  81. Ueno Y, Ono S, Rumble D, Maruyamas S (2008) Quadruple sulfur isotope analysis of c. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691CrossRefGoogle Scholar
  82. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajnoa F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124CrossRefGoogle Scholar
  83. Velikoslavinsky SD, Kotov AB, Sal’nikova EB, Glebovitsky VA, Kovach VP, Zagarnaya NY, Belyaevsky NA, Yakovleva SZ, Fedoseenko AM (2003) The U–Pb age of the Fedorov sequence of the Aldan granulite–gneiss megacomplex, the Aldan Shield. Commun Russ Acad Earth Sci 393:1151–1155 (in Russian)Google Scholar
  84. Vinogradov VI, Reimer TO, Leites AM, Smelov SB (1976) The oldest sulfates in the Archean Formations of the South African and the Aldan Shields, and the evolution of the Earth’s oxygen atmosphere. Lithol Miner Resour 11:407–420 (in Russian)Google Scholar
  85. Warren JK (1989) Evaporite sedimentology. Prentice Hall Inc, Englewood Cliffs, p 285Google Scholar
  86. Warren J (1999) Evaporites: their evolution and economics. Oxford University Press, Oxford, p 438Google Scholar
  87. Werne JP, Hollander DJ, Lyons TW, Sinninghe Damsté JS (2003) Organic sulphur biogeochemistry: recent advances and future research directions. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry: past and present, Geol Soc Am Spec Pap 379: 135–150, Geological Society of America, BoulderCrossRefGoogle Scholar
  88. Woodhead JD, Hergt JM (1997) Application of the ‘double spike’ technique to Pb-isotope geochronology. Chem Geol 138:311–321CrossRefGoogle Scholar
  89. Wortmann UG, Bernasconi SM, Böttcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650CrossRefGoogle Scholar
  90. Zharkov MA (1984) Paleozoic salt bearing formations of the world. Springer, Berlin, p 395CrossRefGoogle Scholar
  91. Ziegler PA (1990) Geological atlas of Western and Central Europe, 2nd edn. Shell Internationale Petroleum Mij, B.V., The HagueGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Harald Strauss
    • 1
  • Victor A. Melezhik
    • 2
    • 3
  • Marlene Reuschel
    • 4
  • Anthony E. Fallick
    • 5
  • Aivo Lepland
    • 2
  • Dmitry V. Rychanchik
    • 6
  1. 1.Institut für Geologie und PaläontologieWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Geological Survey of NorwayTrondheimNorway
  3. 3.Centre for GeobiologyUniversity of BergenBergenNorway
  4. 4.Institut für Geologie und PaläontologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  5. 5.Scottish Universities Environmental Research CentreGlasgowScotland, UK
  6. 6.Institute of Geology, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations