Charge Group Partitioning in Biomolecular Simulation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7262)


Molecular simulation techniques are increasingly being used to study biomolecular systems at an atomic level. Such simulations rely on empirical force fields to represent the intermolecular interactions. There are many different force fields available|each based on a different set of assumptions and thus requiring different parametrization procedures. Recently, efforts have been made to fully automate the assignment of force-field parameters, including atomic partial charges, for novel molecules. In this work, we focus on a problem arising in the automated parametrization of molecules for use in combination with the gromos family of force fields: namely, the assignment of atoms to charge groups such that for every charge group the sum of the partial charges is ideally equal to its formal charge. In addition, charge groups are required to have size at most k. We show \(\mathcal{NP}\)-hardness and give an exact algorithm capable of solving practical problem instances to provable optimality in a fraction of a second.


charge groups atomic force fields gromos biomolecular simulation tree-decomposition dynamic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145(2), 219–231 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  3. 3.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 227–284 (1987)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berendsen, H.J.C., van der Spoel, D., Van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Com. Phys. Comm. 91(1-3), 43–56 (1995)CrossRefGoogle Scholar
  5. 5.
    Beveridge, D.L., DiCapua, F.M.: Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 18(1), 431–492 (1989)CrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L.: NC-Algorithms for Graphs with Small Treewidth. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1-2), 1–45 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Boggara, M.B.B., Faraone, A., Krishnamoorti, R.: Effect of pH and ibuprofen on the phospholipid bilayer bending modulus. J. Phys. Chem. B 114(24), 8061–8066 (2010)CrossRefGoogle Scholar
  9. 9.
    Brooks, B.R., Brooks III, C.L., Mackerell Jr., A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, E.: CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 30(10, sp. iss. si), 1545–1614 (2009)CrossRefGoogle Scholar
  10. 10.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  11. 11.
    Dehof, A.K., Rurainski, A., Bui, Q.B.A., Böcker, S., Lenhof, H.-P., Hildebrandt, A.: Automated bond order assignment as an optimization problem. Bioinformatics 27(5), 619–625 (2011)CrossRefGoogle Scholar
  12. 12.
    Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics 10(2), 139–153 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gerber, P.R.: Charge distribution from a simple molecular orbital type calculation and non-bonding interaction terms in the force field mab. J. Comput.-Aided Mol. Des. 12(1), 37–51 (1998)CrossRefGoogle Scholar
  14. 14.
    Goto, S., Okuno, Y., Hattori, M., Nishioka, T., Kanehisa, M.: LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res. 30(1), 402–404 (2002)CrossRefGoogle Scholar
  15. 15.
    Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. Data Min. Knowl. Discov. 21(3), 472–508 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRefGoogle Scholar
  17. 17.
    Lemkul, J.A., Allen, W.J., Bevan, D.R.: Practical considerations for building GROMOS-compatible small-molecule topologies. J. Chem. Inf. Model. 50(12), 2221–2235 (2010)CrossRefGoogle Scholar
  18. 18.
    Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E.: An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7(12), 4026–4037 (2011)CrossRefGoogle Scholar
  19. 19.
    Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comp. Chem. 25(13), 1656–1676 (2004)CrossRefGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Schmid, N., Eichenberger, A., Choutko, A., Riniker, S., Winger, M., Mark, A.E., van Gunsteren, W.F.: Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011)CrossRefGoogle Scholar
  22. 22.
    Schüttelkopf, A.W., van Aalten, D.M.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. 60, 1355–1363 (2004)Google Scholar
  23. 23.
    Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)CrossRefGoogle Scholar
  24. 24.
    Sharma, M., Khanna, S., Bulusu, G., Mitra, A.: Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy. J. Mol. Graphics Model. 27(6), 665–675 (2009)CrossRefGoogle Scholar
  25. 25.
    Uehara, R., Factor, K.T.: The number of connected components in graphs and its applicationsGoogle Scholar
  26. 26.
    van Gunsteren, W.F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., Geerke, D.P., Glttli, A., Hünenberger, P.H., Kastenholz, M.A., Oostenbrink, C., Schenk, M., Trzesniak, D., van der Vegt, N.F.A., Yu, H.B.: Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. 45(25), 4064–4092 (2006)CrossRefGoogle Scholar
  27. 27.
    Villa, A., Mark, A.E.: Calculation of the free energy of solvation for neutral analogs of amino acid side chains. J. Comp. Chem. 23(5), 548–553 (2002)CrossRefGoogle Scholar
  28. 28.
    Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Graph complexity of chemical compounds in biological pathways. Genome Inform. 14, 376–377 (2003)Google Scholar
  29. 29.
    Yang, C., Zhu, X., Li, J., Shi, R.: Exploration of the mechanism for LPFFD inhibiting the formation of beta-sheet conformation of A beta(1-42) in water. J. Mol. Model. 16(4), 813–821 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centrum Wiskunde & InformaticaLife Sciences GroupAmsterdamNetherlands
  2. 2.Centre for Integrative Bioinformatics VUVU UniversityAmsterdamNetherlands
  3. 3.Division of Molecular ToxicologyVU UniversityAmsterdamNetherlands
  4. 4.Max-Planck-Institut für InformatikSaarbrückenGermany
  5. 5.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
  6. 6.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
  7. 7.Department of Operations ResearchVU UniversityAmsterdamNetherlands

Personalised recommendations