Terahertz Spectroscopy of Liquids and Biomolecules

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 171)

Abstract

The terahertz regime has particular value for liquid and biomolecular spectroscopy. In the case of liquids, terahertz is sensitive to relaxational and collective motions in liquids [1–13]. Applications include determination of sugar, alcohol, and water content. While there are no narrow band identification features for liquids in the terahertz range, the ability of THz to transmit through packaging materials and high sensitivity of relative water content is considered highly appealing for its use as a method to rapidly verify labeled contents. The determination of the water, sucrose, alcohol, liquid fuel, and petroleum content using terahertz have been demonstrated [1, 10]. The fundamental findings from terahertz measurements of liquids include the hydration number associated with solutes [14, 15], the extent of the perturbation of the liquid structure by the solute [16, 17], and the role of interactions in binary liquids [13, 18] . New collective mode vibrations have been identified for alcohols [19, 20], and the changes in the relaxational dynamics due to mixing, and the role of collective vibrations in ionic liquids [21–24]. In order to achieve these many findings, sensitive measurement techniques and data analysis have been developed. In parallel, great strides in modeling have been made to effectively model the picosecond dielectric response for these highly complex systems.

Biological applications of terahertz have been explored from spectroscopy of biologically relevant molecules as small as sucrose up to organisms such as bacterial spores. Significant progress has been made in fundamental characterization of small biomolecules with accurate modeling of both intramolecular modes, and the intermolecular modes for crystalline material. Initial measurements of small proteins have been explored; however, theoretical understanding is not as well developed. While a variety of groups have demonstrated sensitivity in the THz dielectric response to protein and nucleic acid functional state, the origin of this sensitivity is still somewhat controversial.

In this chapter, we will discuss measurement methods, modeling of the terahertz response for these systems, and major results. We will conclude with a discussion on future directions for the applications of terahertz for liquid and biomolecular characterization.

Keywords

Dielectric Response Normal Mode Analysis Small Biomolecule Dipole Alignment Intermolecular Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.U. Jepsen, U. Moller, H. Merbold, Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Express 15(22), 14717–14737 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    U. Moller, D.G. Cooke, K. Tanaka, P.U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]. J. Opt. Soc. Am. B Opt. Phys. 26(9), A113–A125 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy. J. Mol. Struct. 981(1–3), 173–178 (2010)Google Scholar
  4. 4.
    Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative study of boson peak in normal and secondary alcohols with terahertz time-domain spectroscopy. Phys. B Condens. Matter 405(9), 2208–2212 (2010)Google Scholar
  5. 5.
    Y. Danten, M. Besnard, J.C. Delagnes, P. Mounaix, Far infrared absorption and terahertz time domain spectroscopy of liquid CS2: experiments and molecular dynamics simulation. Appl. Phys. Lett. 92(21), 214102 (2008)Google Scholar
  6. 6.
    J.T. Kindt, C.A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100(24), 10373–10379 (1996)CrossRefGoogle Scholar
  7. 7.
    J.P. Laib, D.V. Nickel, D.M. Mittleman, Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes. Chem. Phys. Lett. 493(4–6), 279–282 (2010)Google Scholar
  8. 8.
    J.S. Li, X.J. Li, Determination principal component content of seed oils by THz-TDS. Chem. Phys. Lett. 476(1–3), 92–96 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S.R. Keiding, Dipole correlation functions in liquid benzenes measured with terahertz time domain spectroscopy. J. Phys. Chem. A 101(29), 5250–5254 (1997)CrossRefGoogle Scholar
  10. 10.
    Y.S. Jin, G.J. Kim, C.H. Shon, S.G. Jeon, J.I. Kim, Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy. J. Korean Phys. Soc. 53(4), 1879–1885 (2008)Google Scholar
  11. 11.
    J.P. Laib, D.M. Mittleman, Temperature-dependent terahertz spectroscopy of liquid n-alkanes. J. Infrared Millim. Terahertz Waves 31(9), 1015–1021 (2010)Google Scholar
  12. 12.
    P. Dutta, K. Tominaga, Dependence of low frequency spectra on solute and solvent in solutions studied by terahertz time-domain spectroscopy. Mol. Phys. 107(18), 1845–1854 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A. Oka, K. Tominaga, Terahertz spectroscopy of polar solute molecules in non-polar solvents. J. NonCryst. Solids 352(42–49), 4606–4609 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    T. Arikawa, M. Nagai, K. Tanaka, Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 457(1–3), 12–17 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    U. Heugen, G. Schwaab, E. Brundermann, M. Heyden, X. Yu, D.M. Leitner, M. Havenith, Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad Sci. U. S. A. 103, 12301–12306 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J. Xu, K.W. Plaxco, S.J. Allen, J.E. Bjarnason, E.R. Brown, 0.15–3.72 THz absorption of aqueous salts and saline solutions. Appl. Phys. Lett. 90(3), 031908 (2007)Google Scholar
  18. 18.
    B.N. Flanders, R.A. Cheville, D. Grischkowsky, N.F. Scherer, Pulsed terahertz transmission spectroscopy of liquid CHCl3, CCl4, and their mixtures. J. Phys. Chem. 100(29), 11824–11835 (1996)CrossRefGoogle Scholar
  19. 19.
    Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy. J. Mol. Struct. 981(1–3), 173–178 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative study of boson peak in normal and secondary alcohols with terahertz time-domain spectroscopy. Phys. B Condens. Matter 405(9), 2208–2212 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    K. Yamamoto, M. Tani, M. Hangyo, Terahertz time-domain spectroscopy of imidazolium ionic liquids. J. Phys. Chem. B 111(18), 4854–4859 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Shim, H.J. Kim, Dielectric relaxation, ion conductivity, solvent rotation, and solvation dynamics in a room-temperature ionic liquid. J. Phys. Chem. B 112(35), 11028–11038 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Sangoro, C. Iacob, A. Serghei, S. Naumov, P. Galvosas, J. Karger, C. Wespe, F. Bordusa, A. Stoppa, J. Hunger, R. Buchner, F. Kremer, Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Chem. Phys. 128(21), 214509 (2008)Google Scholar
  24. 24.
    M. Koeberg, C.C. Wu, D. Kim, M. Bonn, THz dielectric relaxation of ionic liquid: water mixtures. Chem. Phys. Lett. 439(1–3), 60–64 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    J.T. Kindt, C.A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Chem. Phys. 100(24), 10373 (1996)CrossRefGoogle Scholar
  26. 26.
    J. Xu, K.W. Plaxco, S.J. Allen, Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci. 15(5), 1175–1181 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Xu, K.W. Plaxco, S.J. Allen, Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory. J. Phys. Chem. B 110(47), 24255–24259 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D.M. Leitner, M. Havenith, An extended dynamical hydration shell around proteins. Proc. Natl. Acad Sci. U. S. A. 104(52), 20749–20752 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M. Nagai, H. Yada, T. Arikawa, K. Tanaka, Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution. Int. J. Infrared Millim. Waves 27(4), 505–515 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    H. Hirori, K. Yamashita, M. Nagai, K. Tanaka, Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 43(10A), L1287–L1289 (2004)Google Scholar
  31. 31.
    B. You, T.A. Liu, J.L. Peng, C.L. Pan, J.Y. Lu, A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection. Opt. Express 17(23), 20675–20683 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide. Appl. Phys. Lett. 92(18), 181104 (2008)Google Scholar
  33. 33.
    J.P. Laib, D.V. Nickel, D.M. Mittleman, Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes. Chem. Phys. Lett. 493(4–6), 279–282 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, D. Marx, Dissecting the THz spectrum of liquid water from first principles via correlations in time and space. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12068–12073 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    D.A. Schmidt, O. Birer, S. Funkner, B.P. Born, R. Gnanasekaran, G.W. Schwaab, D.M. Leitner, M. Havenith, Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J. Am. Chem. Soc. 131(51), 18512–18517 (2009)CrossRefGoogle Scholar
  36. 36.
    S.J. Kim, B. Born, M. Havenith, M. Gruebele, Real-time detection of protein-water dynamics upon protein folding by terahertz absorption. Angewandte Chemie Int. Ed. 47(34), 6486–6489 (2008)CrossRefGoogle Scholar
  37. 37.
    S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, M. Gruebele, D.M. Leitner, M. Havenith, Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy. J. Am. Chem. Soc. 130(8), 2374–2375 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Sajadi, Y. Ajaj, I. Ioffe, H. Weingartner, N.P. Ernsting, Terahertz absorption spectroscopy of a liquid using a polarity probe: a case study of trehalose/water mixtures. Angew. Chem. Int. Ed. 49, 454–457 (2010)CrossRefGoogle Scholar
  39. 39.
    M.L.T. Asaki, A. Redondo, T.A. Zawodzinski, A.J. Taylor, Dielectric relaxation of electrolyte solutions using terahertz transmission spectroscopy. J. Chem. Phys. 116(19), 8469–8482 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    M. Krüger, E. Bründermann, S. Funkner, H. Weingärtner, M. Havenith, Communications: polarity fluctuations of the protic ionic liquid ethylammonium nitrate in the terahertz regime. J. Chem. Phys. 132, 101101 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    A. Chakraborty, T. Inagaki, M. Banno, T. Mochida, K. Tominaga, Low-frequency spectra of metallocenium ionic liquids studied by terahertz time-domain spectroscopy. J. Phys. Chem. A 115, 1313–1319 (2011)CrossRefGoogle Scholar
  42. 42.
    M.C. Rheinstadter, K. Schmalzl, K. Wood, D. Strauch, Protein–protein interaction in purple membrane. Phys. Rev. Lett. 103(12), 128104 (2009)Google Scholar
  43. 43.
    K. Wood, C. Caronna, P. Fouquet, W. Haussler, F. Natali, J. Ollivier, A. Orecchini, M. Plazanet, G. Zaccai, A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range. Chem. Phys. 345, 305–314 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    D. Liu, X.-q. Chu, M. Lagi, Y. Zhang, E. Fratini, P. Baglioni, A. Alatas, A. Said, E. Alp, S.-H. Chen, Studies of phononlike low-energy excitations of protein molecules by inelastic X-ray scattering. Phys. Rev. Lett. 101, 135501 (2008)Google Scholar
  45. 45.
    W.B. Person, G. Zerbi, Vibrational Intensities in Infrared and Raman Spectroscopy. (Elsevier Scientific Publishing, Amsterdam, 1982)Google Scholar
  46. 46.
    B.S. Galabov, T. Dudev, Vibrational Intensities (Elsevier Science, Amsterdam, 1996)Google Scholar
  47. 47.
    J.S. Melinger, N. Laman, S.S. Harsha, S. Cheng, D. Grischkowsky, High-resolution waveguide terahertz spectroscopy of partially oriented organic polycrystalline films. J. Phys. Chem. A 111, 10977–10987 (2007)CrossRefGoogle Scholar
  48. 48.
    C.F. Zhang, S.M. Durbin, Hydration-induced far-infrared absorption increase in myoglobin. J. Phys. Chem. B 110(46), 23607–23613 (2006)CrossRefGoogle Scholar
  49. 49.
    J. Knab, J.-Y. Chen, A. Markelz, Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys. J. 90, 2576–2581 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Y.F. He, J.Y. Chen, J.R. Knab, W.J. Zheng, A.G. Markelz, Evidence of protein collective motions on the picosecond timescale. Biophys. J. 100(4), 1058–1065 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    T. Ding, R.Y. Li, J.A. Zeitler, T.L. Huber, L.F. Gladden, A.P.J. Middelberg, R.J. Falconer, Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity. Opt. Express 18(26), 27431–27444 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    J.Y. Chen, J.R. Knab, S.J. Ye, Y.F. He, A.G. Markelz, Terahertz dielectric assay of solution phase protein binding. Appl. Phys. Lett. 90(24), 243901 (2007)Google Scholar
  53. 53.
    K.M. Tych, A.D. Burnett, C.D. Wood, J.E. Cunningham, A.R. Pearson, A.G. Davies, E.H. Linfield, Applying broadband terahertz time-domain spectroscopy to the analysis of crystalline proteins: a dehydration study. J. Appl. Crystallogr. 44, 129–133 (2011)CrossRefGoogle Scholar
  54. 54.
    E.R. Brown, E.A. Mendoza, D.Y. Xia, S.R.J. Brueck, Narrow THz spectral signatures through an RNA solution in nanofluidic channels. IEEE Sens. J. 10(3), 755–759 (2010)CrossRefGoogle Scholar
  55. 55.
    Y.W. Sun, Y.T. Zhang, E. Pickwell-MacPherson, Investigating antibody interactions with a polar liquid using terahertz pulsed spectroscopy. Biophys. J. 100(1), 225–231 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    G.M. Png, R.J. Falconer, B.M. Fischer, H.A. Zakaria, S.P. Mickan, A.P.J. Middelberg, D. Abbott, Terahertz spectroscopic differentiation of microstructures in protein gels. Opt. Express 17(15), 13102–13115 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    H. Yoneyama, M. Yamashita, S. Kasai, K. Kawase, R. Ueno, H. Ito, T. Ouchi, Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA). Phys. Med. Biol. 53(13), 3543–3549 (2008)CrossRefGoogle Scholar
  58. 58.
    H. Chen, L. Wang, Y.G. Qu, T.Y. Kuang, L.B. Li, W.X. Peng, Investigation of guanidine hydrochloride induced chlorophyll protein 43 and 47 denaturation in the terahertz frequency range. J. Appl. Phys. 102(7) 74700 (2007)Google Scholar
  59. 59.
    Y. He, P.I. Ku, J.R. Knab, J.-Y. Chen, A.G. Markelz, Protein dynamical transition does not require protein structure. Phys. Rev. Lett. 101, 178103 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    R. Liu, M.X. He, R.X. Su, Y.J. Yu, W. Qi, Z.M. He, Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods. Biochem. Biophys. Res. Commun. 391(1), 862–867 (2010)CrossRefGoogle Scholar
  61. 61.
    Y. Ogawa, S. Hayashi, M. Oikawa, C. Otani, K. Kawase, Interference terahertz label-free imaging for protein detection on a membrane. Opt. Express 16(26), 22083–22089 (2008)CrossRefGoogle Scholar
  62. 62.
    A. Menikh, S.P. Mickan, H. Liu, R. MacColl, X.-C. Zhang, Label-free amplified bioaffinity detection using terahertz wave technology. Biosens. Bioelectron. 20(3), 658–662 (2004)CrossRefGoogle Scholar
  63. 63.
    M. Brucherseifer, M. Nagel, P.H. Bolivar, H. Kurz, A. Bosserhoff, R. Buttner, Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77(24), 4049–4051 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity at Buffalo, The State University of New YorkNew YorkUSA

Personalised recommendations