• Petr Kužel
  • Hynek Němec
Part of the Springer Series in Optical Sciences book series (SSOS, volume 171)


We provide an overview of the THz research in metallic and dielectric metamaterials. We introduce the appropriate length scales and averaging procedures to define effective metamaterial properties. A broader discussion of elaboration technologies and experimental determination of metamaterial properties is provided. Finally, we focus on applications aiming to achieve negative refractive index and active control of THz light.


Magnetic Response Effective Permittivity Negative Refractive Index Split Ring Optical Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.G. Veselago, Electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509–514 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, W.J. Stewart, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10, 4785 (1998)Google Scholar
  4. 4.
    J.B. Pendry, A.J. Holden, D.J. Robins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Terahertz magnetic response from artificial materials. Science 303, 1494 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    H.-T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R. Marqués, F. Martín, M. Sorolla, Metamaterials with Negative Parameters (Wiley, New York, 2008)Google Scholar
  10. 10.
    S.A. Ramakrishna, T.M. Grzegorczyk, Physics and applications of negative refractive index materials, (CRC Press, Boca Raton, 2009)Google Scholar
  11. 11.
    W. Cai, V. Shalaev, Opticals metamaterials, (Springer, New York, 2010)Google Scholar
  12. 12.
    H.-T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, Manipulation of terahertz radiation using metamaterials. Laser Photonics Rev. 5, 513–533 (2011)CrossRefGoogle Scholar
  13. 13.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, (Butterworth-Heinemann, Oxford, 1984)Google Scholar
  14. 14.
    J.D. Jackson, Classical electrodynamics (Wiley, Hoboken, 1998)Google Scholar
  15. 15.
    J.C. Maxwell Garnett, Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. 203, 385–420 (1904)ADSCrossRefGoogle Scholar
  16. 16.
    D.A.G. Bruggeman, Calculation of various physics constants in heterogenous substances. Annalen Der Physik 24, 636–664 (1935)ADSCrossRefGoogle Scholar
  17. 17.
    C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, A. Tünnermann, Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Opt. Express 17, 3063–3077 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    C. Kadlec, F. Kadlec, P. Kuzel, K. Blary, P. Mounaix, Materials with on-demand refractive indices in the terahertz range. Opt. Lett. 33, 2275–2277 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. Biber, D. Schneiderbanger, L.-P. Schmidt, Design of a controllable attenuator with high dynamic range for THz-frequencies based on optically stimulated free carriers in high-resistivity silicon. Frequenz 59, 141–144 (2005)CrossRefGoogle Scholar
  20. 20.
    Y.W. Chen, P.Y. Han, X.-C. Zhang, Three-dimensional inverted photonic grating with engineerable refractive indices for broadband antireflection of terahertz waves. Opt. Lett. 35, 3159–3161 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zheng, A. Johnson, E. Pyde, K.J. Chau, Particle-size effects on the terahertz transmittance of metallic particle ensembles: comparison with effective medium theory. Appl. Phys. Lett. 96, 211111 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H.-K. Nienhuys, V. Sundström, Influence of plasmons on terahertz conductivity measurements. Appl. Phys. Lett. 87, 012101 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    H. Němec, P. Kuzel, V. Sundström, Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. J. Photochem. Photobiol. A 215, 123–139 (2010)CrossRefGoogle Scholar
  24. 24.
    E. Hendry, M. Koeberg, B. O’Regan, M. Bonn, Local field effects on electron transport in nanostructures TiO\(_{2}\) revealed by terahertz spectroscopy. Nano Lett. 6, 755–759 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    K.J. Button, Infrared and Millimeter Waves, Millimeter components and techniques, Chap. 6, vol. 13 (Academic, New York, 1985), pp. 175–185Google Scholar
  26. 26.
    Y. Zheng, A. Johnson, E. Pyde, K.J. Chau, Particle-size effects on the terahertz transmittance of metallic particle ensembles: Comparison with effective medium theory. Appl. Phys. Lett. 96, 211111 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    M. Walther, D.G. Cooke, C. Sherstan, M. Hajar, M.R. Freeman, F.A. Hegmann, Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 76, 125408 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Matallösungen. Ann. Phys. 25, 376–445 (1908)Google Scholar
  29. 29.
    S. O’Brien, J.B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002)Google Scholar
  30. 30.
    V. Yannopapas, A. Moroz, Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J. Phys. Condens. Matter 17, 3717–3734 (2005)Google Scholar
  31. 31.
    H. Němec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, Tunable terahertz metamaterials with negative permeability. Phys. Rev. B 79, 241108(R) (2009)Google Scholar
  32. 32.
    Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li, Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    K. Vynck, D. Felbacq, E. Centeno, A.I. Cabuz, D. Cassagne, B. Guizal, All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, M. Walther, Lattice modes mediate radiative coupling in metamaterial arrays. Opt. Express 17, 22108–22113 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, The impact of nearest neighbor interaction on the resonances in terahertz metamaterials. Appl. Phys. Lett. 94, 021116 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    D.R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A.J. Taylor, J.F. O’Hara, Tailored resonator coupling for modifying the terahertz metamaterial response. Opt. Express 19, 10679–10685 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    M.N.O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press LLC, Boca Raton, 2001)Google Scholar
  38. 38.
  39. 39.
  40. 40.
    J.B. Pendry, A. MacKinnon, Calculation of photon dispersion relations. Phys. Rev. Lett. 69, 2772–2775 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    J.B. Pendry, Photonic band structures. J. Mod. Opt. 41, 209–229 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    P. Markoš, C.M. Soukoulis, Numerical studies of left-handed materials and arrays of split ring resonators. Phys. Rev. E 65, 036622 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    S. Zhang, W. Fan, K.J. Malloy, S.R. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    M.G. Maharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981)ADSCrossRefGoogle Scholar
  46. 46.
    T.F. Gundogdu, N. Katsarakis, M. Kafesaki, R.S. Penciu, G. Konstantinidis, A. Kostopoulos, E.N. Economou, C.M. Soukoulis, Negative index short-slab pair and continuous wires metamaterials in the far infrared regime. Opt. Express 16, 9173–9180 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R.S. Penciu, T.F. Gundogdu, M. Kafesaki, E.N. Economou, Th Koschny, C.M. Soukoulis, Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett. 30, 1348–1350 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    W.J. Padilla, D.R. Smith, D.N. Basov, Spectroscopy of metamaterials from infrared to optical frequencies. J. Opt. Soc. Am. B 23, 404–414 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    T.F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R.S. Penciu, M. Kafesaki, E.N. Economou, Th Koschny, C.M. Soukoulis, Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime. Appl. Phys. Lett. 89, 084103 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N.M. Jokerst, D.R. Smith, Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Appl. Phys. Lett. 90, 092508 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, K. Tanaka, Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy. Opt. Express 16, 4785–4796 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    M. Awad, M. Nagel, H. Kurz, Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies. Opt. Lett. 33, 2683–2685 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Ch. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 82, 053811 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A.K. Azad, R.A. Cheville, F. Lederer, W. Zhang, N.I. Zheludev, Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 80, 153104 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    D.R. Smith, D.C. Vier, Th Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    T. Driscoll, D.N. Basov, W.J. Padilla, J.J. Mock, D.R. Smith, Electromagnetic characterization of planar metamaterials by oblique spectroscopic measurements. Phys. Rev. B 75, 115114 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, P. Kuzel, Phase-sensitive time-domain terahertz reflection spectroscopy. Rev. Sci. Instrum. 74, 4711–4717 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    L. Duvillaret, F. Garet, J.-L. Coutaz, A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996)CrossRefGoogle Scholar
  60. 60.
    H. Němec, F. Kadlec, P. Kuzel, L. Duvillaret, J.-L. Coutaz, Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy. Opt. Commun. 260, 175–183 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    P. Uhd Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - Modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011)CrossRefGoogle Scholar
  62. 62.
    W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    M.A. Seo, A.J.L. Adam, J.H. Kang, J.W. Lee, S.C. Jeoung, Q.H. Park, P.C.M. Planken, D.S. Kim, Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. Opt. Express 15, 11781–11789 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    A.K. Azad, J. Dai, W. Zhang, Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 31, 634–636 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102(R) (2007)Google Scholar
  66. 66.
    H.-T. Chen, S. Palit, T. Tyler, C.M. Bingham, J.M.O. Zide, J.F. O’Hara, D.R. Smith, A.C. Gossard, R.D. Averitt, W.J. Padilla, N.M. Jokerst, A.J. Taylor, Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl. Phys. Lett. 93, 091117 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    H.-T. Chen, H. Lu, A.K. Azad, R.D. Averitt, A.C. Gossard, S.A. Trugman, J. F. O‘Hara, and A. J. Taylor, “ Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays”. Opt. Express 16, 7641–7648 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    D. Wu, N. Fang, C. Sun, X. Zhang, Terahertz plasmonic high pass filter. Appl. Phys. Lett. 83, 201–203 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    H. Tao, A.C. Strikwerda, K. Fan, W.J. Padilla, X. Zhang, R.D. Averitt, Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    M. Aznabet, M. Navarro-Cía, S.A. Kuznetsov, A.V. Gelfand, N.I. Fedorinina, YuG Goncharov, M. Beruete, O. El Mrabet, M. Sorolla, Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. Opt. Express 16, 18312–18319 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    H. Tao, A.C. Strikwerda, K. Fan, C.M. Bingham, W.J. Padilla, X. Zhang, R.D. Averitt, Terahertz metamaterials on free-standing highly-flexible polyimide substrates. J. Phys. D: Appl. Phys. 41, 232004 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    X. Liu, S. MacNaughton, D.B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R.D. Averitt, M.R. Dokmeci, S. Sonkusale, W.J. Padilla, Metamaterials on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency. Appl. Phys. Lett. 96, 011906 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, F.G. Omenetto, Metamaterial silk composites at terahertz frequencies. Adv. Mater. 22, 3527–3531 (2010)CrossRefGoogle Scholar
  74. 74.
    N.R. Han, Z.C. Chen, C.S. Lim, B. Ng, M.H. Hong, Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express 19, 6990–6998 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    H.O. Moser, J.A. Kong, L.K. Jian, H.S. Chen, G. Liu, M. Bahou, S.M.P. Kalaiselvi, S.M. Maniam, X.X. Cheng, B.I. Wu, P.D. Gu, A. Chen, S.P. Heussler, S. bin Mahnood, and L. Wen, “ Free-standing THz electromagnetic metamaterials”. Opt. Express 16, 13773–13780 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    B.D.F. Casse, H.O. Moser, J.W. Lee, M. Bahou, S. Inglis, L.K. Jian, Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography. Appl. Phys. Lett. 90, 254106 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)ADSCrossRefGoogle Scholar
  78. 78.
    H.-T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photon. 2, 295–298 (2008)CrossRefGoogle Scholar
  79. 79.
    S.C. Saha, Y. Ma, J.P. Grant, A. Khalid, D.R.S. Cumming, Imprinted terahertz artificial dielectric quarter wave plates. Opt. Express 18, 12168–12175 (2010)CrossRefGoogle Scholar
  80. 80.
    H.O. Moser, B.D.F. Casse, O. Wilhelmi, B.T. Saw, Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Phys. Rev. Lett. 94, 063901 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature Mat. 7, 543–546 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    S.Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A.A. Bettiol, Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B 80, 153103 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    R. Yahiaoui, H. Němec, P. Kuzel, F. Kadlec, C. Kadlec, P. Mounaix, Broadband dielectric terahertz metamaterials with negative permeability. Opt. Lett. 34, 3541 (2009)CrossRefGoogle Scholar
  84. 84.
    C. Kang, C.-S. Kee, I.-B. Sohn, J. Lee, Characterization of terahertz wave transmission through complementary metamaterials with split ring resonator arrays, in Abstracts from 34th International conference on Infrared, Millimeter, and Terahertz Waves (Busan, South Korea, 2009), pp. 767–768Google Scholar
  85. 85.
    T. Kondo, T. Nagashima, M. Hangyo, Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer. Jpn. J. Appl. Phys. Part 2(42), L373–L375 (2003)ADSCrossRefGoogle Scholar
  86. 86.
    K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, M. Hangyo, Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer. Appl. Phys. Express 3, 016701 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    M. Walther, A. Ortner, H. Meier, U. Löffelmann, P.J. Smith, J.G. Korvink, Terahertz metamaterials fabricated by inkjet printing. Appl. Phys. Lett. 95, 251107 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, M. Hangyo, A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. J. Appl. Phys. 107, 024907 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    D.A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry. Adv. Funct. Mater. 20, 1116–1124 (2010)CrossRefGoogle Scholar
  90. 90.
    S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, S.R.J. Brueck, Fabrication of 1D and 2D vertical nanomagnetic resonators. J. Vac. Sci. Tech. B 22, 3327–3330 (2004)CrossRefGoogle Scholar
  91. 91.
    A. Tuniz, B.T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S.C. Fleming, Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett. 96, 191101 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    F. Miyamaru, M. Wada Takeda, K. Taima, Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region. Appl. Phys. Express 2, 042001 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, M. Wada Takeda, Three-dimensional bulk metamaterials operating in the terahertz range. Appl. Phys. Lett. 93, 081105 (2010)ADSCrossRefGoogle Scholar
  94. 94.
    Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, Terahertz metamaterials with VO\(_{2}\) cut-wires for thermal tunability. Appl. Phys. Lett. 97, 021111 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    Y.W. Chen, P.Y. Han, X.-C. Zhang, Tunable broadband antireflection structures for silicon at terahertz frequency. Appl. Phys. Lett. 94, 041106 (2009)ADSCrossRefGoogle Scholar
  96. 96.
    S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009)ADSCrossRefGoogle Scholar
  97. 97.
    A. Pimenov, A. Loidl, Experimental demonstration of artificial dielectrics with a high index of refraction. Phys. Rev. B 74, 193102 (2006)ADSCrossRefGoogle Scholar
  98. 98.
    C.R. Williams, S.R. Andrews, S.A. Maier, A.I. Fernández-Domínguez, L. Martín-Moreno, F.J. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photon. 2, 175–179 (2008)ADSCrossRefGoogle Scholar
  99. 99.
    Q. Gan, Z. Fu, Y.J. Ding, F.J. Bartoli, Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett. 100, 256803 (2008)ADSCrossRefGoogle Scholar
  100. 100.
    A. Ishikawa, S. Zhang, D.A. Genov, G. Bartal, X. Zhang, Deep subwavelength terahertz waveguides using gap magnetic plasmon. Phys. Rev. Lett. 102, 043904 (2009)ADSCrossRefGoogle Scholar
  101. 101.
    J. Lee, K. Lee, H. Park, G. Kang, D.-H. Yu, K. Kim, Tunable subwavelength focusing with despersion-engineered metamaterials in the terahertz regime. Opt. Lett. 35, 2254–2256 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, M.W. Takeda, Three-dimensional bulk metamaterials operating in the terahertz range. Appl. Phys. Lett. 96, 081105 (2010)ADSCrossRefGoogle Scholar
  103. 103.
    K. Fan, A.C. Strikwerda, H. Tao, X. Zhang, R.D. Averitt, 3D Stand-up Metamaterials with a Purely Magnetic Resonance at Terahertz Frequencies, in Proceeding of the 30th Conference on Lasers and Electro-Optics / International Quantum Electronics and Laser Science Conference (CLEO/QELS ’10), San Jose, CA, USA, CTuF1, 18–20 May 2010Google Scholar
  104. 104.
    K. Fan, A.C. Strikwerda, H. Tao, X. Zhang, R.D. Averitt, Stand-up magnetic metamaterials at terahertz frequencies. Opt. Express 19, 12619–12627 (2011)ADSCrossRefGoogle Scholar
  105. 105.
    C.M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, The science of negative index materials. J. Phys. Condens. Matter 20, 304217 (2008)Google Scholar
  106. 106.
    J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J.L. Coutaz, D. Lippens, Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion. J. Appl. Phys. 108, 014907 (2010)ADSCrossRefGoogle Scholar
  107. 107.
    Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials. Mat. Today 12, 60–69 (2009)Google Scholar
  108. 108.
    P. Kuzel, H. Němec, F. Kadlec, Highly tunable structures for the THz range based on strontium titanate heterostructures and metamaterials, in Proceedings of 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Pamplona, Spain, September, 2008), pp. 21–26Google Scholar
  109. 109.
    K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, M. Hangyo, Terahertz metamaterials composed of TiO\(_{2}\) cube arrays, in Proceedings of 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Pamplona, Spain, September, 2008), pp. 21–26Google Scholar
  110. 110.
    P. Kuzel, F. Kadlec, Tunable structures and modulators for THz light. Comptes Rendus Physique 9, 197–214 (2008)ADSCrossRefGoogle Scholar
  111. 111.
    W.L. Chan, H.-T. Chen, A.J. Taylor, I. Brener, M.J. Cich, A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511 (2009)ADSCrossRefGoogle Scholar
  112. 112.
    H.-T. Chen, J.F. O’Hara, A.J. Taylor, R.D. Averitt, C. Highstrete, M. Lee, W.J. Padilla, Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007)ADSCrossRefGoogle Scholar
  113. 113.
    A.K. Azad, A.J. Taylor, E. Smirnova, J.F. O’Hara, Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl. Phys. Lett. 92, 011119 (2008)ADSCrossRefGoogle Scholar
  114. 114.
    H.-T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nature Photon. 3, 148–151 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, Polarization-independent active metamaterial for high-frequency terahertz modulation. Opt. Express 17, 819–827 (2009)CrossRefGoogle Scholar
  116. 116.
    W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006)ADSCrossRefGoogle Scholar
  117. 117.
    H.-T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, R.D. Averitt, Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoislands superlattices. Opt. Lett. 32, 1620–1622 (2007)ADSCrossRefGoogle Scholar
  118. 118.
    C. Kadow, S.B. Fleischer, J.P. Ibbetson, J.E. Bowers, A.C. Gossard, J.W. Dong, C.J. Palmstrøm, Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)ADSCrossRefGoogle Scholar
  119. 119.
    Y. Shi, Q. Zhou, W. Liu, J. Liu, C. Zhang, Anomalous transmission of terahertz waves in arrays of double-ring resonators induced by a 400 nm pump pulse. Appl. Phys. Lett. 98, 191112 (2011)ADSCrossRefGoogle Scholar
  120. 120.
    J.-M. Manceau, N.-H. Shen, M. Kafesaki, C.M. Soukoulis, S. Tzortzakis, Dynamics response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation. Appl. Phys. Lett. 96, 021111 (2010)ADSCrossRefGoogle Scholar
  121. 121.
    N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E.N. Economou, C.M. Soukoulis, Broadband blueshift tunable metamaterials and dual-band switches. Phys. Rev. B 79, 161102(R) (2009)Google Scholar
  122. 122.
    Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, N.M. Jokerst, S.A. Cummer, A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators. Appl. Phys. Lett. 93, 191110 (2008)ADSCrossRefGoogle Scholar
  123. 123.
    T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, S.Y. Cho, N.M. Jokerst, D.R. Smith, Tuned permeability in terahertz split-ring resonators for devices nad sensors. Appl. Phys. Lett. 91, 062511 (2007)ADSCrossRefGoogle Scholar
  124. 124.
    P. Kuzel, F. Kadlec, H. Nemec, R. Ott, E. Hollmann, N. Klein, Dielectric tunability of SrTiO\(_{3}\) thin films in the terahertz range. Appl. Phys. Lett. 88, 102901 (2006)ADSCrossRefGoogle Scholar
  125. 125.
    C. Kadlec, V. Skoromets, F. Kadlec, H. Nemec, J. Hlinka, J. Schubert, G. Panaitov, P. Kuzel, Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO\(_{3}\) /DyScO\(_{3}\) heterostructure. Phys. Rev. B 80, 174116 (2009)ADSCrossRefGoogle Scholar
  126. 126.
    R. Singh, A.K. Azad, Q.X. Jia, A.J. Taylor, H.-T. Chen, Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Opt. Lett. 36, 1230–1232 (2011)ADSCrossRefGoogle Scholar
  127. 127.
    J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu, Tuning of superconducting niobium nitride terahertz metamaterials. Opt. Express 19, 12021–12026 (2011)ADSCrossRefGoogle Scholar
  128. 128.
    G. He, R.-X. Wu, Y. Poo, P. Chen, Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh. J. Appl. Phys. 107, 093522 (2010)ADSCrossRefGoogle Scholar
  129. 129.
    B. Ozbey, O. Aktas, Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express 19, 5741–5752 (2011)ADSCrossRefGoogle Scholar
  130. 130.
    H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    H. Tao, C.M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication and characterization. Phys. Rev. B 78, 541103(R) (2008)Google Scholar
  132. 132.
    N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerts, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)ADSCrossRefGoogle Scholar
  133. 133.
    J. Grant, Y. Ma, S. Saha, L.B. Lok, A. Khalid, D.R.S. Cumming, Polarization insensitive terahertz metamaterial absorber. Opt. Lett. 36, 1524–1526 (2011)ADSCrossRefGoogle Scholar
  134. 134.
    J. Zhang, P.A.R. Ade, P. Mauskopf, L. Moncelsi, G. Savini, N. Whitehouse, New artificial dielectric metamaterial and its application as a terahertz antireflection coating. Appl. Opt. 48, 6635–6642 (2009)ADSCrossRefGoogle Scholar
  135. 135.
    X.G. Peralta, E.I. Smirnova, A.K. Azad, H.-T. Chen, A.J. Taylor, I. Brener, J.F. O’Hara, Metamaterials for THz polarimetric devices. Opt. Express 17, 774–783 (2009)ADSCrossRefGoogle Scholar
  136. 136.
    A.C. Strikwerda, K. Fan, H. Tao, D.V. Pilon, X. Zhang, R.D. Averitt, Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Opt. Express 17, 136–149 (2009)ADSCrossRefGoogle Scholar
  137. 137.
    P. Weis, O. Paul, C. Imhof, R. Beigang, M. Rahm, Strongly birefringent metamaterials as negative index terahertz wave plates. Appl. Phys. Lett. 95, 171104 (2009)ADSCrossRefGoogle Scholar
  138. 138.
    I.A.I. Al-Naib, C. Jansen, N. Born, M. Koch, Polarization and angle independent terahertz metamaterials with high Q-factors. Appl. Phys. Lett. 98, 091107 (2011)ADSCrossRefGoogle Scholar
  139. 139.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  140. 140.
    K.L. Tsakmakidis, A.D. Boardman, O. Hess, Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007)ADSCrossRefGoogle Scholar
  141. 141.
    P.R. Berman, Goos-Hänchen shift in negatively refractive media. Phys. Rev. E 66, 067603 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of PhysicsAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations