Generation and Detection of Terahertz Radiation

  • Joshua R. Freeman
  • Harvey E. Beere
  • David A. Ritchie
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 171)

Abstract

Methods for generating and detecting terahertz (THz) radiation are reviewed with emphasis on the physical mechanisms involved as well as the typical characteristics of the generated radiation. We first discuss methods for generating and detecting broadband pulses of THz radiation, which are based on optical femtosecond laser systems. The second section describes techniques used to generate continuous-wave THz radiation and finally we review THz detectors.

Keywords

Optical Pulse Nonlinear Medium Femtosecond Pulse Quantum Cascade Laser Induce Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.H. Auston, K.P. Cheung, P.R. Smith, Appl. Phys. Lett. 45(3), 284 (1984). doi: 10.1063/1.95174 Google Scholar
  2. 2.
    C. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 53(16), 1480 (1988). doi: 10.1063/1.99971 Google Scholar
  3. 3.
    C. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54(6), 490 (1989). doi: 10.1063/1.100958 Google Scholar
  4. 4.
    O. Svelto, Principles of Lasers (Plenum Press, New York, 1998), pp. 330–359Google Scholar
  5. 5.
    B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, Opt. Express 16(13), 9565 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-13-9565 Google Scholar
  6. 6.
    J. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998), pp. 410–413Google Scholar
  7. 7.
    L. Duvillaret, F. Garet, J.F. Roux, J.L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 7(4), 615 (2001). doi: 10.1109/2944.974233 Google Scholar
  8. 8.
    D.C. Look, D.C. Walters, G.D. Robinson, J.R. Sizelove, M.G. Mier, C.E. Stutz, J. Appl. Phys. 74(1), 306 (1993). doi: 10.1063/1.354108 Google Scholar
  9. 9.
    K.A. McIntosh, K.B. Nichols, S. Verghese, E.R. Brown, Appl. Phys. Lett. 70(3), 354 (1997). doi: 10.1063/1.118412 Google Scholar
  10. 10.
    M. Tani, S. Matsuura, K. Sakai, S.I. Nakashima, Appl. Opt. 36(30), 7853 (1997). http://ao.osa.org/abstract.cfm?URI=ao-36-30-7853 Google Scholar
  11. 11.
    M. Tani, Y. Hirota, C. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, M. Hangyo, Int. J. Infrared Millim. Waves 27(4), 531 (2006). doi: 10.1007/s10762-006-9105-8 Google Scholar
  12. 12.
    F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, M. Tani, Appl. Phys. Lett. 96(21), 211104 (2010). doi: 10.1063/1.3436724 Google Scholar
  13. 13.
    P.K. Benicewicz, J.P. Roberts, A.J. Taylor, J. Opt. Soc. Am. B 11(12), 2533 (1994). http://josab.osa.org/abstract.cfm?URI=josab-11-12-2533 Google Scholar
  14. 14.
    A. Yariv, P. Yeh, Optical Waves in Crystals, (Wiley, New York, 2003), Chap. Nonlinear OpticsGoogle Scholar
  15. 15.
    Y.J. Ding, I.B. Zotova, Opt. Quantum Electron. 32(4), 531 (2000). doi: 10.1023/A:1007099701272 Google Scholar
  16. 16.
    G. Gallot, J. Zhang, R.W. McGowan, T.I. Jeon, D. Grischkowsky, Appl. Phys. Lett. 74(23), 3450 (1999). doi: 10.1063/1.124124 Google Scholar
  17. 17.
    A. Leitenstorfer, S. Hunsche, J. Shah, M.C. Nuss, W.H. Knox, Appl. Phys. Lett. 74(11), 1516 (1999). doi: 10.1063/1.123601 Google Scholar
  18. 18.
    A.G. Stepanov, J. Hebling, J. Kuhl, Appl. Phys. Lett. 83(15), 3000 (2003). doi: 10.1063/1.1617371 Google Scholar
  19. 19.
    K.L. Yeh, M.C. Hoffmann, J. Hebling, K.A. Nelson, Appl. Phys. Lett. 90(17), 171121 (2007). doi: 10.1063/1.2734374 Google Scholar
  20. 20.
    H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Phys. Rev. Lett. 71(17), 2725 (1993). doi: 10.1103/PhysRevLett.71.2725 Google Scholar
  21. 21.
    T. Loffler, F. Jacob, H.G. Roskos, Appl. Phys. Lett. 77(3), 453 (2000). doi: 10.1063/1.127007 Google Scholar
  22. 22.
    K.Y. Kim, A.J. Taylor, J.H. Glownia., G. Rodriguez, Nat. Photon 2(10), 605 (2008). doi: 10.1038/nphoton.2008.153 Google Scholar
  23. 23.
    K.Y. Kim, Phys. Plasmas 16(5), 056706 (2009). doi: 10.1063/1.3134422 Google Scholar
  24. 24.
    Y. Shen, T. Watanabe, D.A. Arena, C.C. Kao, J.B. Murphy, T.Y. Tsang, X.J. Wang, G.L. Carr, Phys. Rev. Lett. 99(4), 043901 (2007). doi: 10.1103/PhysRevLett.99.043901 Google Scholar
  25. 25.
    G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, G.P. Williams, Nature 420(6912), 153 (2002). doi: 10.1038/nature01175 Google Scholar
  26. 26.
    M. Abo-Bakr, J. Feikes, K. Holldack, G. Wüstefeld, H.W. Hübers, Phys. Rev. Lett. 88(25), 254801 (2002). doi: 10.1103/PhysRevLett.88.254801 Google Scholar
  27. 27.
    G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. Johnston, M. Fischer, J. Faist, T. Dekorsy, Opt. Express 18, 4939 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Mihoubi, K.G. Wilcox, S. Elsmere, A. Quarterman, R. Rungsawang, I. Farrer, H.E. Beere, D.A. Ritchie, A. Tropper, V. Apostolopoulos, Opt. Lett. 33(18), 2125 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-18-2125 Google Scholar
  29. 29.
    A.H. Quarterman, K.G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S.P. Elsmere, I. Farrer, D.A. Ritchie, A. Tropper, Nat. Photonics 3(12), 729 (2009). doi: 10.1038/nphoton.2009.216 Google Scholar
  30. 30.
    E. Baumann, F.R. Giorgetta, D. Hofstetter, H. Lu, X. Chen, W.J. Schaff, L.F. Eastman, S. Golka, W. Schrenk, G. Strasser, Appl. Phys. Lett. 87(19), 191102 (2005). doi: 10.1063/1.2126130 Google Scholar
  31. 31.
    X. Zheng, C.V. McLaughlin, P. Cunningham, M.L. Hayden, J. Nanoelectron. Optoelectron. 2, 58 (2007)CrossRefGoogle Scholar
  32. 32.
    E.R. Brown, F.W. Smith, K.A. McIntosh, J. Appl. Phys. 73(3), 1480 (1993). doi: 10.1063/1.353222 Google Scholar
  33. 33.
    S. Matsuura, M. Tani, K. Sakai, Appl. Phys. Lett. 70(5), 559 (1997). doi: 10.1063/1.118337 Google Scholar
  34. 34.
    K.A. McIntosh, E.R. Brown, K.B. Nichols, O.B. McMahon, W.F. DiNatale, T.M. Lyszczarz, Appl. Phys. Lett. 67(26), 3844 (1995). doi: 10.1063/1.115292. http://link.aip.org/link/?APL/67/3844/1 Google Scholar
  35. 35.
    S. Verghese, K. McIntosh, E. Brown, IEEE Trans. Microwave Theory Tech. 45(8), 1301 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    D. Saeedkia, S. Safavi-Naeini, J. Lightwave Technol. 26(15), 2409 (2008). http://jlt.osa.org/abstract.cfm?URI=JLT-26-15-2409
  37. 37.
    E. Brown, in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2011Google Scholar
  38. 38.
    W. Shi, Y.J. Ding, N. Fernelius, K. Vodopyanov, Opt. Lett. 27(16), 1454 (2002). doi: 10.1364/OL.27.001454 Google Scholar
  39. 39.
    J.E. Schaar, K.L. Vodopyanov, M.M. Fejer, Opt. Lett. 32(10), 1284 (2007). doi: 10.1364/OL.32.001284 Google Scholar
  40. 40.
    K. Kawase, J. ichi Shikata, H. Ito, J. Phys. D Appl. Phys. 35(3), R1 (2002). http://stacks.iop.org/0022-3727/35/i=3/a=201
  41. 41.
    D.J.M. Stothard, T.J. Edwards, D. Walsh, C.L. Thomson, C.F. Rae, M.H. Dunn, P.G. Browne, Appl. Phys. Lett. 92(14), 141105 (2008). doi: 10.1063/1.2907489 Google Scholar
  42. 42.
    G.W. Chantry, Long-Wave Optics (Academic Press, London, 1984)Google Scholar
  43. 43.
    R.G. Carter, Electromagnetic Waves: Microwave Components and Devices (Chapman and Hall, London, 1990)Google Scholar
  44. 44.
    V.G. Bozhkov, Radiophys. Quantum Electron. 46, 631 (2003). doi: 10.1023/B:RAQE.0000024993.40125.2b
  45. 45.
    I.R.M. Weikle, T.W. Crowe, E.L. Kollberg, Multiplier and Harmonic Generator Technologies for Terahertz Applications, in Terahertz Sensing Technology (World Scientific Publishing, Singapore, 2003)Google Scholar
  46. 46.
    J. Ward, G. Chattopadhyay, J. Gill, H. Javadi, C. Lee, R. Lin, A. Maestrini, F. Maiwald, I. Mehdi, E. Schlecht, P. Siegel, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2008. 15–19 Sept 2008, pp. 1–3. doi: 10.1109/ICIMW.2008.4665437
  47. 47.
    G. Kozlov, A. Volkov, in Millimeter and Submillimeter Wave Spectroscopy of Solids, ed. by G. Grüner. Topics in Applied Physics, vol. 74, (Springer, Berlin, 1998), Chap. 3, pp. 51–109. doi: 10.1007/BFb0103420.10.1007/BFb0103420
  48. 48.
    Y.S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009), p. 141Google Scholar
  49. 49.
    A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, K. Kawase, Appl. Opt. 43(30), 5637 (2004). doi: 10.1364/AO.43.005637 Google Scholar
  50. 50.
    K.J. Kim, A. Sessler, Science 250(4977), 88 (1990). doi: 10.1126/science.250.4977.88 Google Scholar
  51. 51.
    Ucsb, FEL database. http://sbfel3.ucsb.edu/www/fel_table.html. Accessed 21 Feb 2011
  52. 52.
    L.A. Reichertz, O.D. Dubon, G. Sirmain, E. Bründermann, W.L. Hansen, D.R. Chamberlin, A.M. Linhart, H.P. Röser, E.E. Haller, Phys. Rev. B 56(19), 12069 (1997). doi: 10.1103/PhysRevB.56.12069 Google Scholar
  53. 53.
    E. Brundermann, D.R. Chamberlin, E.E. Haller, Appl. Phys. Lett. 76(21), 2991 (2000). doi: 10.1063/1.126555 Google Scholar
  54. 54.
    F. Keilmann, V.N. Shastin, R. Till, Appl. Phys. Lett. 58(20), 2205 (1991). doi: 10.1063/1.105235 Google Scholar
  55. 55.
    G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, J. Faist, Laser Photonics Rev. 3(1–2), 45 (2009). doi: 10.1002/lpor.200810030.0214 Google Scholar
  56. 56.
    G. Scalari, C. Walther, L. Sirigu, M.L. Sadowski, H. Beere, D. Ritchie, N. Hoyler, M. Giovannini, J. Faist, Phys. Rev. B 76(11), 115305 (2007). doi: 10.1103/PhysRevB.76.115305.0215 Google Scholar
  57. 57.
    S. Barbieri, J. Alton, S. Dhillon, H. Beere, M. Evans, E. Linfield, A. Davies, D. Ritchie, R. Kohler, A. Tredicucci, F. Beltram, IEEE J. Quantum Electron. 39(4), 586 (2003). B017Google Scholar
  58. 58.
    S. Kumar, Q. Hu, J.L. Reno, Appl. Phys. Lett. 94(13), 131105 (2009). doi: 10.1063/1.3114418.0235 Google Scholar
  59. 59.
    A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. Williams, Q. Hu, J. Reno, Nat. Photonics 3(1), 41 (2009). doi: 10.1038/nphoton.2008.251.0217
  60. 60.
    P. Griffiths, J.A.D. Haseth, Fourier Transform Infrared Spectrometry, (Wiley, New Jersey, 2007)Google Scholar
  61. 61.
    F. Sizov, OptoElectron. Rev. 18(1), 10 (2010). doi: 10.2478/s11772-009-0029-4 Google Scholar
  62. 62.
    P.L. Richards, J. Appl. Phys. 76(1), 1 (1994). doi: 10.1063/1.357128
  63. 63.
    E. Putley, in Infrared Detectors, vol. 5, ed. by R. Willardson, A.C. Beer (Academic Press, New York, 1970), pp. 259–285. http://www.sciencedirect.com/science/article/B7W5P-4SD21XD-B/2/fe15f961c5f5e0cacab06ae91d22e45a
  64. 64.
    M.J.E. Golay, Rev. Sci. Instrum. 20(11), 816 (1949). doi: 10.1063/1.1741396 Google Scholar
  65. 65.
    T.W. Kenny, J.K. Reynolds, J.A. Podosek, E.C. Vote, L.M. Miller, H.K. Rockstad, W.J. Kaiser, Rev. Sci. Instrum. 67(1), 112 (1996). doi: 10.1063/1.1146559 Google Scholar
  66. 66.
    P. Yagoubov, M. Kroug, H. Merkel, E. Kollberg, G. Gol’tsman, S. Svechnikov, E. Gershenzon, Appl. Phys. Lett. 73(19), 2814 (1998). doi: 10.1063/1.122599 Google Scholar
  67. 67.
    H.W. Hübers, H. Richter, S. Pavlov, A. Semenov, A. Tredicucci, L. Mahler, H. Beere, D. Ritchie, Frequenz 62(5), 0202 (2008)CrossRefGoogle Scholar
  68. 68.
    H. Richter, A.D. Semenov, S.G. Pavlov, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, K.S. Il’in, M. Siegel, H.W. Hubers, Appl. Phys. Lett. 93(14), 141108 (2008). doi: 10.1063/1.2988896.0205 Google Scholar
  69. 69.
    H. Liu, H. Luo, C. Song, Z. Wasilewski, A.S. Thorpe, J. Cao, Infrared Phys. Technol. 50(2–3), 191 (2007). doi: 10.1016/j.infrared.2006.10.026 Google Scholar
  70. 70.
    C.H. Yu, B. Zhang, W. Lu, S.C. Shen, H.C. Liu, Y.Y. Fang, J.N. Dai, C.Q. Chen, Appl. Phys. Lett. 97(2), 022102 (2010). doi: 10.1063/1.3462300 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joshua R. Freeman
    • 1
  • Harvey E. Beere
    • 1
  • David A. Ritchie
    • 1
  1. 1.Laboratoire Pierre AigrainÉcole Normale SupérieureParisFrance

Personalised recommendations