Abstract

Kinetic Monte Carlo (kMC) is a very versatile and powerful method to study the kinetics of surface reactions, but there are nevertheless some systems and phenomena for which one would like it to be more efficient or one would like to extend it. We discuss what kind of fast processes may pose a problem, when they become problematic, and what can be done about it so that kMC simulations can be done with longer time scales. Coarse-graining is presented as a method to do simulations with larger length scales. Mass transport and heat transfer are discussed in the context of continuum models that are coupled to kMC simulations. Finally, off-lattice kMC simulations are introduced to show that one can also do kMC simulations of systems that can not be described with a lattice-gas model.

Keywords

Transition State Fast Process Protective Domain System Exit Dynamic Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Chatterjee, F. Voter, J. Chem. Phys. 132, 194101 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    S.V. Nedea, A.P.J. Jansen, J.J. Lukkien, P.A.J. Hilbers, Phys. Rev. E 65, 066701 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    E.A. Mastny, E.L. Haseltine, J.B. Rawlings, J. Chem. Phys. 125, 194715 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    D.R. Mason, R.E. Rudd, A.P. Sutton, Comput. Phys. Commun. 160, 140 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    R.E. Rudd, D.R. Mason, A.P. Sutton, Prog. Mater. Sci. 52, 319 (2007) CrossRefGoogle Scholar
  6. 6.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981) MATHGoogle Scholar
  7. 7.
    S.X. Sun, Phys. Rev. Lett. 96, 210602 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Trygubenko, D.J. Wales, Graph transformation method for calculating waiting times in Markov Chains. http://arXiv.org/abs/cond-mat/0603830 (2006)
  9. 9.
    L. Kantorovich, Phys. Rev. B 75, 064305 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    T. Oppelstrup, V.V. Bulatov, G.H. Gilmer, M.H. Kalos, B. Sadigh, Phys. Rev. Lett. 97, 230602 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    T. Oppelstrup, V.V. Bulatov, A. Donev, M.H. Kalos, G.H. Gilmer, B. Sadigh, Phys. Rev. E 80, 066701 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    A. Donev, V.V. Bulatov, T. Oppelstrup, C.H. Gilmer, B. Sadigh, M.H. Kalos, J. Comput. Phys. 229, 3214 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    D.T. Gillespie, J. Chem. Phys. 115, 1716 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    D.T. Gillespie, L.R. Petzold, J. Chem. Phys. 119, 8229 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    Y. Cao, L. Petzold, M. Rathinam, D.T. Gillespie, J. Chem. Phys. 121, 12169 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    D.G. Vlachos, Phys. Rev. E 78, 046713 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Katsoulakis, A.J. Majda, D.G. Vlachos, Proc. Natl. Acad. Sci. USA 100, 782 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    M.A. Katsoulakis, A.J. Majda, D.G. Vlachos, J. Comput. Phys. 186, 250 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    M.A. Katsoulakis, D.G. Vlachos, J. Chem. Phys. 119, 9412 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    A. Chatterjee, D.G. Vlachos, J. Chem. Phys. 121, 11420 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Snyder, A. Chatterjee, D.G. Vlachos, Comput. Chem. Eng. 29, 701 (2005) CrossRefGoogle Scholar
  22. 22.
    A. Chatterjee, D.G. Vlachos, J. Chem. Phys. 124, 064110 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    A. Chatterjee, D.G. Vlachos, J. Comput. Phys. 211, 596 (2006) ADSMATHCrossRefGoogle Scholar
  24. 24.
    A. Chatterjee, D.G. Vlachos, J. Comput.-Aided Mater. Des. 14, 253 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    S.D. Collins, A. Chatterjee, D.G. Vlachos, J. Chem. Phys. 129, 184101 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    J. Dai, D. Seider, T. Sinno, J. Chem. Phys. 128, 194705 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    S. Are, M.A. Katsoulakis, A. Szepessy, Chin. Ann. Math., Ser. B 30, 653 (2009) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    S. Redner, in Nonequilibrium Statistical Mechanics in One Dimension, ed. by V. Privman (Cambridge University Press, Cambridge, 1996), pp. 3–27 Google Scholar
  29. 29.
    K. Gurney, An Introduction to Neural Networks (University College London Press, London, 1997) CrossRefGoogle Scholar
  30. 30.
    J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City, 1991) Google Scholar
  31. 31.
    T.J. Pricer, M.J. Kushner, R.C. Alkire, J. Electrochem. Soc. 149, C396 (2002) CrossRefGoogle Scholar
  32. 32.
    T.J. Pricer, M.J. Kushner, R.C. Alkire, J. Electrochem. Soc. 149, C406 (2002) CrossRefGoogle Scholar
  33. 33.
    T.O. Drews, E.G. Webb, D.L. Ma, J. Alameda, R.D. Braatz, R.C. Alkire, AIChE J. 50, 226 (2004) CrossRefGoogle Scholar
  34. 34.
    E. Rusli, T.O. Drews, R.D. Braatz, Chem. Eng. Sci. 59, 5607 (2004) CrossRefGoogle Scholar
  35. 35.
    Z. Zheng, R.M. Stephens, R.D. Braatz, R.C. Alkire, L.R. Petzold, J. Comput. Phys. 227, 5184 (2008) ADSMATHCrossRefGoogle Scholar
  36. 36.
    T.C. Castonguay, F. Wang, J. Chem. Phys. 128, 124706 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    S. Matera, K. Reuter, Catal. Lett. 133, 156 (2009) CrossRefGoogle Scholar
  38. 38.
    S. Matera, K. Reuter, Phys. Rev. B 82, 085446 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    K. Reuter, M. Scheffler, Phys. Rev. B 68, 045407 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    K. Reuter, M. Scheffler, Phys. Rev. B 73, 045433 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    D. Majumder, L.J. Broadbelt, AIChE J. 52, 4214 (2006) CrossRefGoogle Scholar
  42. 42.
    C. Bos, F. Sommer, E.J. Mittemeijer, Acta Mater. 52, 3545 (2004) CrossRefGoogle Scholar
  43. 43.
    C. Bos, F. Sommer, E.J. Mittemeijer, Acta Mater. 53, 5333 (2004) CrossRefGoogle Scholar
  44. 44.
    P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987) Google Scholar
  45. 45.
    G. Henkelman, G. Jóhannesson, H. Jónsson, in Progress in Theoretical Chemistry and Physics, ed. by S.D. Schwarts (Kluwer Academic, London, 2000) Google Scholar
  46. 46.
    A.F. Voter, F. Montalenti, T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002) CrossRefGoogle Scholar
  47. 47.
    G. Henkelman, H. Jónsson, J. Chem. Phys. 115, 9657 (2001) ADSCrossRefGoogle Scholar
  48. 48.
    G. Henkelman, H. Jónsson, Phys. Rev. Lett. 90, 116101 (2003) ADSCrossRefGoogle Scholar
  49. 49.
    F. Much, M. Ahr, M. Biehl, W. Kinzel, Comput. Phys. Commun. 147, 226 (2002) ADSMATHCrossRefGoogle Scholar
  50. 50.
    T.F. Middleton, D.J. Wales, J. Chem. Phys. 120, 8134 (2004) ADSCrossRefGoogle Scholar
  51. 51.
    K.M. Westerberg, C.A. Floudas, J. Chem. Phys. 110, 9259 (1999) ADSCrossRefGoogle Scholar
  52. 52.
    Y. Lin, M.A. Stadtherr, J. Chem. Phys. 121, 10159 (2004) ADSCrossRefGoogle Scholar
  53. 53.
    Y. Lin, M.A. Stadtherr, J. Comput. Chem. 26, 1413 (2005) CrossRefGoogle Scholar
  54. 54.
    E.A. Bleda, X. Gao, M.S. Daw, Comput. Mater. Sci. 43, 608 (2008) CrossRefGoogle Scholar
  55. 55.
    A. Ramasubramaniam, M. Itakura, M. Ortiz, E.A. Carter, J. Mater. Res. 23, 2757 (2008) ADSCrossRefGoogle Scholar
  56. 56.
    F. El-Mellouhi, N. Mousseau, L.J. Lewis, The kinetic activation-relaxation technique: A powerful off-lattice on-the-fly kinetic Monte Carlo algorithm. http://arXiv.org/abs/0805.2158v1 (2008)
  57. 57.
    L. Xu, G. Henkelman, J. Chem. Phys. 129, 114104 (2008) ADSCrossRefGoogle Scholar
  58. 58.
    D.R. Mason, T.S. Hudson, A.P. Sutton, Comput. Phys. Commun. 165, 37 (2005) ADSCrossRefGoogle Scholar
  59. 59.
    A. Kara, O. Trushin, H. Yildirim, T.S. Rahman, J. Phys., Condens. Matter 21, 084213 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    R.A. Olsen, G.J. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson, J. Chem. Phys. 121, 9776 (2004) ADSCrossRefGoogle Scholar
  61. 61.
    M. Jorge, S.M. Auerbach, P.A. Monson, J. Am. Chem. Soc. 127, 14388 (2005) CrossRefGoogle Scholar
  62. 62.
    M.H. Ford, S.M. Auerbach, P.A. Monson, J. Chem. Phys. 126, 144701 (2007) ADSCrossRefGoogle Scholar
  63. 63.
    L. Jin, S.M. Auerbach, P.A. Monson, J. Phys. Chem. C 114, 14393 (2010) CrossRefGoogle Scholar
  64. 64.
    A. Malani, S.M. Auerbach, P.A. Monson, J. Phys. Chem. Lett. 1, 3219 (2010) CrossRefGoogle Scholar
  65. 65.
    A. Malani, S.M. Auerbach, P.A. Monson, J. Phys. Chem. C 115, 15988 (2011) CrossRefGoogle Scholar
  66. 66.
    X.Q. Zhang, A.P.J. Jansen, Phys. Rev. E 82, 046704 (2010) ADSCrossRefGoogle Scholar
  67. 67.
    X.Q. Zhang, T.T. Trinh, R.A. van Santen, A.P.J. Jansen, J. Am. Chem. Soc. 133, 6613 (2011) CrossRefGoogle Scholar
  68. 68.
    X.Q. Zhang, T.T. Trinh, R.A. van Santen, A.P.J. Jansen, J. Phys. Chem. C 115, 9561 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ST/SKAEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations