Experimental Descriptive Complexity

  • Marco Carmosino
  • Neil Immerman
  • Charles Jordan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7230)

Abstract

We describe our development and use of DescriptiveEnvironment (DE). This is a program to aid researchers in Finite Model Theory and students of logic to automatically generate examples, counter- examples of conjectures, reductions between problems, and visualizations of structures and queries.

DescriptiveEnvironment is available for free use under an ISC license at http://www.cs.umass.edu/~immerman/de. We encourage researchers and students at all levels to experiment with it. Please tell us of your insights, progress, suggestions, or extensions of DE.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CFI92]
    Cai, J., Fürer, M., Immerman, N.: An Optimal Lower Bound on the Number of Variables for Graph Identification. Combinatorica 12(4), 389–410 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. [CIE10]
    Crouch, M., Immerman, N., Moss, J.E.B.: Finding Reductions Automatically. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 181–200. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [EF99]
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)MATHGoogle Scholar
  4. [DGH09]
    Dawar, A., Grohe, M., Holm, B., Laubner, B.: Logics with Rank Operators. In: IEEE Symp. Logic In Comput. Sci., pp. 113–122 (2009)Google Scholar
  5. [Fag74]
    Fagin, R.: Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In: Karp, R. (ed.) Complexity of Computation. SIAM-AMS Proc., vol. 7, pp. 43–73 (1974)Google Scholar
  6. [Gro10]
    Grohe, M.: Fixed-Point Definability and Polynomial Time on Graphs with Excluded Minors. In: IEEE Symp. Logic In Comput. Sci., pp. 179–188 (2010)Google Scholar
  7. [Imm99]
    Immerman, N.: Descriptive Complexity. Springer Graduate Texts in Computer Science, New York (1999)Google Scholar
  8. [Imm95]
    Immerman, N.: Descriptive Complexity: A Logician’s Approach to Computation. Notices of the American Mathematical Society 42(10), 1127–1133 (1995)MathSciNetMATHGoogle Scholar
  9. [Imm88]
    Immerman, N.: Nondeterministic Space is Closed Under Complementation. SIAM J. Comput. 17(5), 935–938 (1988)MathSciNetMATHCrossRefGoogle Scholar
  10. [Imm87]
    Immerman, N.: Languages That Capture Complexity Classes. SIAM J. Comput. 16(4), 760–778 (1987)MathSciNetMATHCrossRefGoogle Scholar
  11. [Imm86]
    Immerman, N.: Relational Queries Computable in Polynomial Time. Information and Control 68, 86–104 (1986); A preliminary version of this paper appeared in ACM Symp. Theory of Comput., pp. 147–152 (1982)MathSciNetMATHCrossRefGoogle Scholar
  12. [IL90]
    Immerman, N., Lander, E.S.: Describing Graphs: A First-Order Approach to Graph Canonization. In: Selman, A. (ed.) Complexity Theory Retrospective, pp. 59–81. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. [Lad75]
    Ladner, R.: On the structure of polynomial time reducibility. J. Assoc. Comput. Mach. 22(1), 155–171 (1975)MathSciNetMATHCrossRefGoogle Scholar
  14. [Lib04]
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)MATHGoogle Scholar
  15. [Rog94]
  16. [Sze88]
    Szelepcsényi, R.: The Method of Forced Enumeration for Nondeterministic Automata. Acta Informatica 26, 279–284 (1988)MathSciNetMATHCrossRefGoogle Scholar
  17. [Var82]
    Vardi, M.: Complexity of Relational Query Languages. In: ACM Symp. Theory of Comput., pp. 137–146 (1982)Google Scholar
  18. [Val82]
    Valiant, L.: Reducibility By Algebraic Projections. L’Enseignement mathématique T. XXVIII(3-4), 253–268 (1982)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Carmosino
    • 1
  • Neil Immerman
    • 1
  • Charles Jordan
    • 2
  1. 1.Computer Science Dept.University of MassachusettsAmherstUSA
  2. 2.Division of Computer ScienceHokkaido UniversityJapan

Personalised recommendations