Dexter Kozen’s Influence on the Theory of Labelled Markov Processes

  • Prakash Panangaden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7230)

Abstract

In the Fall of 1985 Dexter and I both started at Cornell as new faculty members in the celebrated Computer Science Department, home to luminaries such as Juris Hartmanis, John Hopcroft, David Gries and Robert Constable. I was a very new assistant professor but Dexter was already an acknowledged star with celebrated contributions to several areas: algebra and complexity, decision procedures for real-closed fields [1], dynamic logic [2-4] and many other areas across both tracks of theoretical computer science. I had no doctorate in computer science, hardly any publications and no clearly defined research area. Early in the term Dexter summoned me to his office and grilled me about work I was doing on nondeterministic dataflow. After that meeting I needed several glasses of beer to recover but a lasting friendship was sealed.

References

  1. 1.
    Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and geometry. Journal of Computer and System Sciences 32, 251–264 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Harel, D., Kozen, D., Tiuryn, J.: Propositional Dynamic Logic. MIT Press (2000)Google Scholar
  3. 3.
    Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoretical Computer Science 14, 113–118 (1981)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science 27, 333–354 (1983)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kozen, D.: Semantics of probabilistic programs. Journal of Computer and Systems Sciences 22, 328–350 (1981)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kozen, D.: A probabilistic PDL. Journal of Computer and Systems Sciences 30, 162–178 (1985)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Johnstone, P.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press (1982)Google Scholar
  8. 8.
    Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)Google Scholar
  9. 9.
    Plotkin, G.D.: Lecture notes on domain theory. The Pisa Notes (1983), http://www.dcs.ed.ac.uk/home/gdp/publications/pubs.html
  10. 10.
    Smyth, M.: Powerdomains and Predicate Transformers. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 662–676. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  11. 11.
    Morgan, C., McIver, A.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer, Heidelberg (2004) (to appear)Google Scholar
  12. 12.
    Panangaden, P.: The category of Markov processes. ENTCS 22, 17 pages (1999), http://www.elsevier.nl/locate/entcs/volume22.html MathSciNetGoogle Scholar
  13. 13.
    Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.) Categorical Aspects of Topology and Analysis. Lecture Notes In Mathematics, vol. 915, pp. 68–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  14. 14.
    Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensor-* categories. Journal of Pure and Applied Algebra 143, 3–47 (1999)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)Google Scholar
  16. 16.
    Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In: Proceedings of the Twelfth IEEE Symposium On Logic In Computer Science, Warsaw, Poland (1997)Google Scholar
  17. 17.
    Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimulation for labelled Markov processes. In: Proceedings of the 13th IEEE Symposium on Logic in Computer Science, pp. 478–489. IEEE Press, Indianapolis (1998)Google Scholar
  18. 18.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for Labeled Markov Systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximation of labeled Markov processes. In: Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer Science, pp. 95–106. IEEE Computer Society Press (2000)Google Scholar
  20. 20.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labeled Markov processes. Information and Computation 179, 163–193 (2002)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: The metric analogue of weak bisimulation for labelled Markov processes. In: Proceedings of the Seventeenth Annual IEEE Symposium on Logic in Computer Science, pp. 413–422 (2002)Google Scholar
  22. 22.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak Bisimulation is Sound and Complete for PCTL*. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 355–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labeled Markov processes. Information and Computation 184, 160–200 (2003)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: A metric for labelled Markov processes. Theoretical Computer Science 318, 323–354 (2004)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Information and Computation 204, 503–523 (2006)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Chaput, P., Danos, V., Panangaden, P., Plotkin, G.: Approximating Markov Processes by Averaging. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 127–138. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Kozen, D.: Coinductive proof principles for stochastic processes. In: Alur, R. (ed.) Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, LICS 2006, pp. 359–366 (2006)Google Scholar
  28. 28.
    Kozen, D.: Coinductive proof principles for stochastic processes. Logical Methods in Computer Science 3, 1–14 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Prakash Panangaden
    • 1
  1. 1.School of Computer ScienceMcGill UniversityCanada

Personalised recommendations