Brzozowski’s Algorithm (Co)Algebraically

  • Filippo Bonchi
  • Marcello M. Bonsangue
  • Jan J. M. M. Rutten
  • Alexandra Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7230)

Abstract

We give a new presentation of Brzozowski’s algorithm to minimize finite automata, using elementary facts from universal algebra and coalgebra, and building on earlier work by Arbib and Manes on the duality between reachability and observability. This leads to a simple proof of its correctness and opens the door to further generalizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed Coalgebras (Unpublished note)Google Scholar
  2. 2.
    Arbib, M.A., Manes, E.G.: Adjoint machines, state-behaviour machines, and duality. Journal of Pure and Applied Algebra 6, 313–344 (1975)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arbib, M.A., Manes, E.G.: Machines in a category. Journal of Pure and Applied Algebra 19, 9–20 (1980)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bidoit, M., Hennicker, R., Kurz, A.: On the Duality between Observability and Reachability. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 72–87. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bezhanishvili, N., Panangaden, P., Kupke, C.: Minimization via duality (Unpublished note)Google Scholar
  6. 6.
    Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. Mathematical Theory of Automata 12(6), 529–561 (1962)Google Scholar
  7. 7.
    Castiglione, G., Restivo, A., Sciortino, M.: Nondeterministic Moore Automata and Brzozowski’s Algorithm. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 88–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kozen, D.: Automata and Computability. Springer, Heidelberg (1997)MATHCrossRefGoogle Scholar
  9. 9.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19, 427–443 (1997)CrossRefGoogle Scholar
  10. 10.
    Hundt, C., Panangaden, P., Pineau, J., Precup, D., Dinculescu, M.: The duality of state and observations (Unpublished note)Google Scholar
  11. 11.
    Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)CrossRefGoogle Scholar
  12. 12.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000); Fundamental StudyMathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)Google Scholar
  14. 14.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing the powerset construction, coalgebraically. In: Proc. of FSTTCS 2010. Leibniz International Proceedings in Informatics (LIPIcs) Series, vol. 8, pp. 272–283 (2010)Google Scholar
  16. 16.
    Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. Ph.D thesis, Eindhoven University of Technology, The Netherlands (1995)Google Scholar
  17. 17.
    Watson, B.W.: Directly Constructing Minimal DFAs: Combining Two Algorithms by Brzozowski. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 311–317. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Marcello M. Bonsangue
    • 2
    • 3
  • Jan J. M. M. Rutten
    • 3
    • 4
  • Alexandra Silva
    • 3
    • 4
    • 5
  1. 1.CNRS, ENS LyonUniversité de Lyon LIP (UMR 5668)France
  2. 2.LIACSLeiden UniversityThe Netherlands
  3. 3.Radboud University NijmegenThe Netherlands
  4. 4.Centrum Wiskunde & InformaticaThe Netherlands
  5. 5.HASLab / INESC TECUniversidade do MinhoPortugal

Personalised recommendations