Logic and Program Semantics pp 219-243

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7230)

Combining Epistemic Logic and Hennessy-Milner Logic

  • Sophia Knight
  • Radu Mardare
  • Prakash Panangaden

Abstract

We define an epistemic logic for labelled transition systems by introducing equivalence relations for the agents on the states of the labelled transition system. The idea is that agents observe the dynamics of the system modulo their ability to distinguish states and in the process learn about the current state and past history of the execution. This is in the spirit of dynamic epistemic logic but is a direct combination of Hennessy-Milner logic and epistemic logic. We give an axiomatization for the logic and prove a completeness theorem with respect to the class of models obtained by unfolding labelled transition systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoretical Computer Science 14, 113–118 (1981)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. In: Proceedings of the Third ACM Symposium on Principles of Distributed Computing, pp. 50–61 (1984); A revised version appears as IBM Research Report RJ 4421 (August 1987)Google Scholar
  3. 3.
    Chadha, R., Delaune, S., Kremer, S.: Epistemic Logic for the Applied Pi Calculus. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS, vol. 5522, pp. 182–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Heidelberg (2008)MATHGoogle Scholar
  5. 5.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press (1995)Google Scholar
  6. 6.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)Google Scholar
  7. 7.
    Milner, R.: Communication and Concurrency. Prentice-Hall (1989)Google Scholar
  8. 8.
    Milner, R.: Operational and Algebraic Semantics of Concurrent Processes. In: Handbook of Theoretical Computer Science, vol. B, pp. 1201–1242. MIT Press (1990)Google Scholar
  9. 9.
    Popkorn, S.: First Steps in Modal Logic. Cambridge University Press (1994)Google Scholar
  10. 10.
    Kripke, S.: Semantical analysis of modal logic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67–96 (1963)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)Google Scholar
  12. 12.
    Halpern, J., Moses, Y.: Knowledge and common knowledge in a distributed environment. JACM 37, 549–587 (1990)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32, 137–162 (1985)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences (1979)Google Scholar
  15. 15.
    Panangaden, P., Taylor, K.E.: Concurrent common knowledge. In: Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing, pp. 197–209 (1988)Google Scholar
  16. 16.
    Panangaden, P., Taylor, K.E.: Concurrent common knowledge. Distributed Computing 6, 73–93 (1992)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming Languages (1991)Google Scholar
  18. 18.
    Neiger, G., Toueg, S.: Substituting for real time and common knowledge in asynchronous distributed systems. In: Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pp. 281–293 (1987)Google Scholar
  19. 19.
    Neiger, G., Tuttle, M.R.: Common Knowledge and Consistent Simultaneous Coordination. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 334–352. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  20. 20.
    Halpern, J.Y., Tuttle, M.R.: Knowledge, probability and adversaries. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, pp. 103–118. ACM (1989)Google Scholar
  21. 21.
    Halpern, J.Y., Moses, Y., Tuttle, M.R.: A knowledge-based analysis of zero knowledge. In: Proceedings of the 20th ACM Symposium on Theory of Computing, pp. 132–147 (1988)Google Scholar
  22. 22.
    Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and Epistemic Approaches to Protocol Analysis: Bridging the Gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Mardare, R., Priami, C.: A decidable extension of Hennessy-Milner logic with spatial operators. Technical Report DIT-06-009, Ingegneria e Scienza dell’Informazione, University of Trento (2006)Google Scholar
  24. 24.
    Mardare, R., Priami, C.: Decidable Extensions of Hennessy-Milner Logic. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 196–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Chatzikokolakis, K., Knight, S., Panangaden, P., Palamidessi, C.: Epistemic strategies and games on concurrent processes. ACM Transactions on Computational Logic (in press, 2012)Google Scholar
  26. 26.
    Pacuit, E., Simon, S.: Reasoning with protocols under imperfect information. The Review of Symbolic Logic 4, 412–444 (2011)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sophia Knight
    • 1
  • Radu Mardare
    • 2
  • Prakash Panangaden
    • 3
  1. 1.Ecole Polytechnique and INRIA SaclayFrance
  2. 2.Department of Computer ScienceAalborg UniversityDenmark
  3. 3.School of Computer ScienceMcGill UniversityCanada

Personalised recommendations