Sedimentology and Sequence Stratigraphy of the Late Precambrian Carbonates of the Mbuji-Mayi Supergroup in the Sankuru-Mbuji-Mayi-Lomami-Lovoy Basin (Democratic Republic of the Congo)

  • Franck DelpomdorEmail author
  • Christian Blanpied
  • Aurelien Virgone
  • Alain Préat
Part of the Regional Geology Reviews book series (RGR)


The late Mesoproterozoic–middle Neoproterozoic carbonate succession (1155 Ma–800 Ma) of the Mbuji-Mayi Supergroup (Democratic Republic of Congo) represents a classic late Precambrian carbonate sequence whose architecture is poorly known. Here we present new data and synthesis of microfacies analysis, sequence stratigraphy, Fischer plots coupled with C and O isotopes, to evaluate the paleoecology and sea level variations of the carbonate series of the Mbuji-Mayi Supergroup, and to establish hierarchical approach stratigraphic framework from which to resolve the evolution of the Sankuru-Mbuji-Mayi-Lomami-Lovoy Basin. Our microfacies and sequence stratigraphy analyses show that the carbonate succession consists of strata accumulated on a ramp, during cyclic sedimentation across the inner ramp. Here plurimetric ‘thin’ peritidal cycles (±4 m-thick on average) record a relative maximum sea level of ca. 4 m, with fluctuations in the range around 1–4 m. This shallow-water depth and the abundance of cyanobacteria suggest that water column was oxygenated. By contrast the subtidal cyclic facies at the outer/middle ramp, preserve ‘thick’ subtidal sequences characterized by an average thickness of ±17 m. Accurate relative sea level fluctuations are difficult to assess in this ‘deeper’ environment since the facies could have been deposited in a wide range of shallow water that did not completely fill the accomodation space or available space. A probable magnitude for sea-level fluctuations here is around 10–20 m. These data are the first to place a quantitative constraint on the late Mesoproterozoic to middle Neoproterozoic carbonate deposits that have lively covered much of the Congo Shield at the end of the Precambrian, and is therefore an important type section for Central Africa.


Mbuji-Mayi Supergroup Meso-Neoproterozoic Carbonate microfacies C–O–Sr isotopes Paleoenvironment Sequence stratigraphy 



Financial support from the TOTAL PhD scholarship (grant ULB/TOTAL-FR00003322) is gratefully acknowledged. The Royal Museum for Central Africa (Tervuren, Belgium) is thanked for providing samples of the Mbuji-Mayi Supergroup. The manuscript has been greatly improved following reviews and suggestions by M.J. de Wit and H. E. Frimmel. We would like to thank M. Rottesman for her critical encouragement.


  1. Allan JR, Matthews RK (1982) Isotope signatures associated with early meteoric diagenesis. Sedimentology 29:797–817CrossRefGoogle Scholar
  2. Asmeron Y, Jacobsen S, Knoll AH, Butterfield NJ, Swett K (1991) Strontium isotope variations of Neoproterozoic seawater: implications for crustal evolution. Geochim Cosmochim Acta 55:2883–2894CrossRefGoogle Scholar
  3. Bartley JK, Semikhatov MA, Kaufman AJ, Knoll AH, Pope MC, Jacobsen SB (2001) Global events across the Mesoproterozoic-Neoproterozoic boundary: C and Sr isotopic evidence from Siberia. Precambrian Res 111:165–202CrossRefGoogle Scholar
  4. Batten KL, Narbonne GM, James NP (2004) Paleoenvironments and growth of early Neoproterozoic calcimicrobial reefs: platformal Little Dal Group, northwestern Canada. Precambrian Res 133:249–269CrossRefGoogle Scholar
  5. Bertrand-Sarfati J (1972a) Stromatolithes columnaires de certaines formations carbonatées du Précambrien supérieur du bassin congolais (Bushimay, Lindien, Ouest-Congolien). Annales du Musée Royal de l’Afrique Centrale, Tervuren, Belgique, Série in-8 - n° 74, 45ppGoogle Scholar
  6. Bertrand-Sarfati J (1972b) Stromatolithes columnaires du Précambrien supérieur du Sahara Nord-Occidental—inventaire, morphologie et microstructure des laminations, corrélations stratigraphiques. Thèse de Doctorat d’Etat, Université des Sciences et Technologies de Montpellier et du Centre national de la recherche scientifique. Centre de Recherche des Zones arides, France No. 14, unpublishedGoogle Scholar
  7. Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Geology 79:3–57Google Scholar
  8. Cahen L (1954) Extension et âge d'une minéralisation Cu, Pb, Zn en Afrique centrale et australe. Bulletin de la Société belge de Géologie, Hydrologie, Paléontologie 63:89–100Google Scholar
  9. Cahen L, Mortelmans G (1947) Le système de la Bushimaie au Katanga. Bulletin de la Société belge de Géologie, Hydrologie, Paléontologie 56:217–253Google Scholar
  10. Cahen L, Snelling NJ, Delhal J, Vail JR (1984) Geochronology and evolution of Africa. Clarendon, Oxford, 512 ppGoogle Scholar
  11. Canfield DE (1999) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  12. Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, Amsterdam, 375 ppGoogle Scholar
  13. Catuneanu O, Martins-Neto MA, Eriksson PG (2005) Precambrian sequence stratigraphy. Sediment Geol 176:67–95CrossRefGoogle Scholar
  14. Day ES, James NP, Narbonne GM, Dalrymple RW (2004) A sedimentary prelude to Marinoan glaciation, Cryogenian (Middle Neoproterozoic) Keele Formation, Mackenzie Mountains, northwestern Canada. Precambrian Res 133:223–247CrossRefGoogle Scholar
  15. Delhal J, Lepersonne J, Raucq P (1966) Le Complexe sédimentaire et volcanique de la Lulua (Kasaï). Annales du Musée Royal de l’Afrique Centrale, Tervuren 51:106Google Scholar
  16. Delhal J, Ledent D, Torquato JR (1976) Nouvelles données géochronologiques relatives au complexe gabbro-noritique et charnockitique du bouclier du Kasaï et à son prolongement en Angola. Ann Soc Geol Belg 99:211–226Google Scholar
  17. Delhal J, Deutsch S, Snelling NJ (1989) Datation du Complexe sédimentaire et volcanique de la Lulua (Protérozoïque inférieur, Kasaï, Zaïre). Musée Royal de l’Afrique Centrale, Tervuren (Belgique), Département de Géologie et de Minéralogie. Rapport Annuel 1987–88:93–99Google Scholar
  18. Delpomdor F, Préat A (2012) Hydrocarbon reservoir potential of Neoproterozoic carbonates in the Mbuji-Mayi Supergroup (Sankuru-Bushimay area), Democratic Republic of Congo: stratigraphy, sedimentology, geochemistry, petrophysics. ULB/Total-FR00003322, 276pp (unpublished, confidential document)Google Scholar
  19. Delpomdor F, Préat A (2013) Early and late Neoproterozoic C, O and Sr isotope chemostratigraphy in the carbonates of West Congo and Mbuji-Mayi supergroups: a preserved marine signature? Palaeogeogr Palaeoclimatol Palaeoecol 389:35–47CrossRefGoogle Scholar
  20. Delpomdor F, Linneman U, Boven A, Gartner A, Travin A, Blanpied C, Virgone A, Jelsma H, Préat A (2013a) Depositional age, provenance, tectonic and paleoclimatic settings of the late Mesoproterozoic – middle Neoproterozoic Mbuji-Mayi Supergroup, Democratic Republic of Congo. Palaeogeogr Palaeoclimatol Palaeoecol 389:4–34CrossRefGoogle Scholar
  21. Delpomdor F, Blanpied C, Virgone A, Préat A (2013b) Paleoenvironments in Meso-Neoproterozoic carbonates of the Mbuji-Mayi Supergroup (Democratic Republic of Congo) – Microfacies analysis combined with C-O-Sr isotopes, major-trace elements and REE + Y distributions. J Afr Earth Sci 88:72–100CrossRefGoogle Scholar
  22. Derry LA, Keto LS, Jacobsen SB, Knoll AH, Swet K (1989) Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochim Cosmochim Acta 53:2331–2339CrossRefGoogle Scholar
  23. Derry LA, Kaufman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56:1317–1329CrossRefGoogle Scholar
  24. Des Marais DJ (1994) Tectonic control of the crustal organic carbon reservoir during the Precambrian. Chem Geol 114:303–314CrossRefGoogle Scholar
  25. Des Marais DJ, Strauss H, Summons RE, Hayes JM (1992) Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359:605–609CrossRefGoogle Scholar
  26. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1, American Association of Petroleum Geologists Memoir., pp 108–121Google Scholar
  27. Embry AF, Klovan JE (1972) Absolute water depth limits of late Devonian paleoecological zones. Geol Rundsch 61:672–686CrossRefGoogle Scholar
  28. Fairchild IJ, Marshall JD, Bertrand-Sarfati J (1990) Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): influences of primary mineralogy and diagenesis. Am J Sci 291-A:46–79Google Scholar
  29. Fischer AG (1964) The Lofer cyclothems of the Alpine Triassic. In: Merriam DF (ed) Symposium on cyclic sedimentation, vol 1, State of Geological Survey of Kansas Bulletin., pp 107–149Google Scholar
  30. Flügel E (2004) Microfacies analysis of limestones, analysis interpretation and application. Springer, Berlin, 976 ppGoogle Scholar
  31. Freytet P, Plaziat J-C (1972) Les constructions algaires continentales stromatolithiques, examples pris dans la Crétacé supérieur et le Tertiaire de France et d'Espagne du Nord. International Congress of Geology, MontréalGoogle Scholar
  32. Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: examples from platform carbonates of the Alpine Triassic. Geol Soc Am Bull 102:535–562CrossRefGoogle Scholar
  33. Grotzinger JP (1986) Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geol Soc Am Bull 97:1208–1231CrossRefGoogle Scholar
  34. Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN (2005) Towards a Neoproterozoic composite carbon isotope record. Geol Soc Am Bull 117:1181–1207CrossRefGoogle Scholar
  35. Halverson GP, Dudas FO, Maloof AC, Bowring SA (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol 256:103–129CrossRefGoogle Scholar
  36. Halverson GP, Hurtgen MT, Porter SM, Collins AS (2010) Neoproterozoic-Cambrian Biogeochemical Evolution. In: Gaucher C, Sial AN, Frimmel HE, Halverson GP (eds) Neoproterozoic-Cambrian Tectonics, vol 16, Global change and evolution: a focus on South Western Gondwana. Developments in Precambrian geology., pp 351–365CrossRefGoogle Scholar
  37. Hoffman HJ (1976) Precambrian microflora, Belcher Island, Canada: significance and systematic. J Paleontol 50:1040–1073Google Scholar
  38. Hoffman P, Kaufman A, Halverson G, Schrag D (1998) A Neoproterozoic Snowball Earth. Science 281:1342–1346CrossRefGoogle Scholar
  39. Holmden C, Creaser RA, Muehlenbachs K, Leslie SA, Bergström SM (1998) Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: Implications for secular curves. Geology 26:567–570CrossRefGoogle Scholar
  40. Holmes A, Cahen L (1955) African geochronology. Colo Geol Miner Res 5:3–38Google Scholar
  41. Immenhauser A, Della Porta G, Kenter JAM, Bahamonde J (2003) An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology 50:953–959CrossRefGoogle Scholar
  42. Kah LC, Sherman AB, Narbonne GM, Kaufman AJ, Knoll AH, James NP (1999) δ13C isotope stratigraphy of the Mesoproterozoic Bylot Supergroup, Northern Baffin Island: Implications for regional lithostratigraphic correlations. Can J Earth Sci 36:313–332CrossRefGoogle Scholar
  43. Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49CrossRefGoogle Scholar
  44. Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120:409–430CrossRefGoogle Scholar
  45. Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci 95:6600–6605CrossRefGoogle Scholar
  46. Kaufman AJ, Jiang G, Christie-Blick N, Banerjee DM, Rai V (2006) Stable isotope of the terminal Krol platform in the Lesser Himalayas of northern India. Precambrian Res 147(1–2):156–185CrossRefGoogle Scholar
  47. Knoll AH (1992) Biological and geochemical preludes to Ediacaran radiation. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Topics in geobiology, vol 10. Plenum, New York, pp 53–84CrossRefGoogle Scholar
  48. Knoll A, Hayes J, Kaufman A, Swett K, Lambert I (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and east Greenland. Nature 321:832–837CrossRefGoogle Scholar
  49. Knoll AH, Kaufman AJ, Semikhatov MA (1995) The carbon isotopic composition of Proterozoic carbonates: Riphean successions from Northwestern Siberia (Anabar Massif, Turukhansk uplift). Am J Sci 295:823–850CrossRefGoogle Scholar
  50. Krapez B (1996) Sequence-stratigraphic concepts applied to the identification of basin-filling rhythms in Precambrian successions. Aust J Earth Sci 43:355–380CrossRefGoogle Scholar
  51. Martins-Neto MA (2009) Sequence stratigraphic framework of Proterozoic successions in eastern Brazil. Mar Petrol Geol 26:163–176CrossRefGoogle Scholar
  52. Melezhik VA, Gorokhov IM, Kuznetsov AB, Fallick AE (2001) Chemostratigraphy of Neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova 13:1–11CrossRefGoogle Scholar
  53. Miall AD (1997) The geology of stratigraphic sequences. Springer, Berlin, 433 ppCrossRefGoogle Scholar
  54. Miall AD (2000) Principle of sedimentary basin analysis, 3rd edn. Springer, New York, 616 ppCrossRefGoogle Scholar
  55. Narbonne GM, James NP (1996) Mesoproterozoic deep-water reefs from Borden Peninsula, Arctic Canada. Sedimentology 43:827–848CrossRefGoogle Scholar
  56. Podkovyrov VN, Semikhatov MA, Kuznetsov AB, Vinogradov DP, Kozlov VI, Kislova IV (1998) Carbonate carbon isotopic composition in the Upper Riphean Stratotype, the Karatau Group, Southern Urals. Stratigr Geol Correl 6:319–335Google Scholar
  57. Posamentier HW, Allen GP (1999) Siliciclastic sequence stratigraphy: concepts and applications. Society and economic paleontologists and mineralogists, Concepts in sedimentology and paleontology 7, p 210Google Scholar
  58. Pratt BR, James NP, Clinton AC (1992) Peritidal carbonates. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, Canada, p 409Google Scholar
  59. Raucq P (1957) Contribution à la reconnaissance du Système de la Bushimay. Annales du Musée Royal du Congo Belge (Tervuren), Série 8, vol 18, 427 ppGoogle Scholar
  60. Raucq P (1970) Nouvelles acquisitions sur le système de la Bushimay (République Démocratique du Congo). Annales du Musée Royal de l’Afrique Centrale, Tervuren, Belgique, Série in-8°- n° 69Google Scholar
  61. Saddler PM, Osleger DA, Montanez IP (1993) On the labelling, length and objective basis of Fischer plots. J Sediment Petrol 63:360–368Google Scholar
  62. Schröder S, Grotzinger JP, Amthor JE, Matter A (2005) Carbonate deposition and hydrocarbon reservoir development at the Precambrian-Cambrian boundary: The Ara Group in South Oman. Sediment Geol 180:1–28CrossRefGoogle Scholar
  63. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: Version 1.1. Geochem Geophys Geosyst. 3. doi:  10.1029/2001GC000266
  64. Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Res 57:967–975Google Scholar
  65. Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 126:359–362CrossRefGoogle Scholar
  66. Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol 132:97–118CrossRefGoogle Scholar
  67. Tewari VC, Sial AN (2007) Neoproterozoic-Early Cambrian isotopic variation and chemostyratigraphy of the Lesser Himalaya, India, Eastern Gondwana. Chem Geol 237:64–88CrossRefGoogle Scholar
  68. Vail PR, Mitchum RM Jr, Todd RG, Widmier JM, Thompson S III, Sangree JB, Bubb JN, Hatlelid WG (1977) Seismic stratigraphy and global changes of sea-level. In: Payton CE (ed) Seismic stratigraphy—applications to hydrocarbon exploration, vol 26, American Association of Petroleum Geologists Memoir., pp 49–212Google Scholar
  69. Van Wagoner JC (1995) Sequence stratigraphy and marine to non-marine facies architecture of foreland basin strata, Book Cliffs, Utah, USA. In: Van Wagoner JC, Bertram GT (eds) Sequence stratigraphy of Foreland Basin Deposits-Outcrop and Subsurface Examples from the Cretaceous of North America, vol 64, American Association of Petroleum Geologists Memoir., pp 137–223Google Scholar
  70. Wynn TC, Read JF (2007) Carbon-oxygen isotopes signal of Mississippian slope carbonates, Appalachians, USA: A complex response to climate-driven fourth-order glacio-eustacy. Palaeogeogr Palaeoclimatol Palaeoecol 256:254–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Franck Delpomdor
    • 1
    Email author
  • Christian Blanpied
    • 2
  • Aurelien Virgone
    • 2
  • Alain Préat
    • 1
  1. 1.Department of Earth Sciences and Environment, Unit of Biogeochemistry and Modeling of the Earth SystemUniversité libre de BruxellesBrusselsBelgium
  2. 2.Total Exploration and ProductionPau CedexFrance

Personalised recommendations