A Shared Opportunistic Infrastructure for Long-Lived Wireless Sensor Networks

  • Xiuchao Wu
  • Cormac J. Sreenan
  • Kenneth N. Brown
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 81)


In this paper, a Shared Opportunistic Infrastructure (SOI) is proposed to reduce total cost of ownership for long-lived wireless sensor networks through exploiting human mobility. More specifically, various sensor nodes are opportunistically connected with their corresponding servers through smart phones carried by people in their daily life. In this paper, we will introduce the motivations, present the architecture, discuss the feasibility, and identify several research opportunities of SOI.


Sensor Node Wireless Sensor Network Medium Access Control Smart Phone Human Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    IEEE 802.15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE (2006)Google Scholar
  2. 2.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: World Sensor Web Workshop (in conjunction with Sensys) (2006)Google Scholar
  4. 4.
    Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A.: People-centric urban sensing. In: ACM/IEEE WICON (2006)Google Scholar
  5. 5.
    Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.: Anonysense: Privacy-aware people-centric sensing. In: Mobisys (2008)Google Scholar
  6. 6.
    Edalat, N., Xiao, W., Tham, C.-K., Keikha, E., Ong, L.-L.: A price-based adaptive task allocation for wireless sensor network. In: MASS (2009)Google Scholar
  7. 7.
    Gonzlez, M.C., Hidalgo, C.A., Barabsi, A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  8. 8.
    Gruteser, M., Grunwald, D.: Enhancing location privacy in wireless lan through disposable interface identifiers: a quantitative analysis. Mobile Networks and Applications 10(3), 315–325 (2005)CrossRefGoogle Scholar
  9. 9.
    Hu, W., Corke, P., Shih, W.C., Overs, L.: secFleck: A Public Key Technology Platform for Wireless Sensor Networks. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS, vol. 5432, pp. 296–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Jain, S., Demmer, M., Patra, R., Fall, K.: Using redundancy to cope with failures in a delay tolerant network. In: SIGCOMM (2005)Google Scholar
  11. 11.
    Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S., Park, T., Song, J.: Seemon: Scalable and energy-efficient context monitoring framework for sensor-rich mobile environments. In: Mobisys (2008)Google Scholar
  12. 12.
    Lamport, L.: Password authentication with insecure communication. Communications of the ACM 24, 770–772 (1981)CrossRefGoogle Scholar
  13. 13.
    Liu, C., Wu, J., Cardei, I.: Message forwarding in cyclic mobispace: the multi-copy case. In: MASS (2009)Google Scholar
  14. 14.
    Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: MOBISYS (2009)Google Scholar
  15. 15.
    Pasztor, B., Musolesi, M., Mascolo, C.: Opportunistic mobile sensor data collection with scar. In: MASS, pp. 1–12 (2007)Google Scholar
  16. 16.
    Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling a three-tier architecture for sparse sensor networks. In: IEEE SNPA Workshop, pp. 30–41 (2003)Google Scholar
  17. 17.
    Somasundara, A.A., Kansal, A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8), 958–973 (2006)CrossRefGoogle Scholar
  18. 18.
    Wang, W., Srinivasan, V., Motani, M.: Adaptive contact probing mechanisms for delay tolerant applications. In: Mobicom, pp. 230–241 (2007)Google Scholar
  19. 19.
    Wu, X., Brown, K.N., Sreenan, C.J.: Exploiting rush hours for energy-efficient contact probing in opportunistic data collection. In: The 4th International Workshop on Sensor Networks (in conjunction with IEEE ICDCS) (2011)Google Scholar
  20. 20.
    Wu, X., Brown, K.N., Sreenani, C.J.: SNIP: A sensor node-initiated probing mechanism for opportunistic data collection in sparse wireless sensor networks. In: The First International Workshop on Cyber-Physical Networking Systems (in conjunction with IEEE INFOCOM) (2011)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Xiuchao Wu
    • 1
  • Cormac J. Sreenan
    • 1
  • Kenneth N. Brown
    • 1
  1. 1.Department of Computer ScienceUniversity College CorkRepublic of Ireland

Personalised recommendations