Flow Cytometric Immunophenotyping as Diagnostic Tool of Hematopoietic Malignancies

  • Łukasz Sędek
  • Juan Flores-Montero
  • Joanna Bulsa
  • Susana Barrena
  • Julia Almeida
  • Alberto Orfao
  • Tomasz Szczepański
Chapter
Part of the Principles and Practice book series (PRINCIPLES)

Abstract

Flow cytometry is a diagnostic technique capable of distinguishing cells by their size, internal complexity, and antigen repertoire (phenotype) with the use of monoclonal antibodies conjugated with fluorescent dyes. Nowadays, flow cytometry has become a highly specific and fully reproducible method for the diagnosis of hematological malignancies. Flow cytometry allows for the analysis of any type of sample prepared as a single cell suspension, e.g., blood, bone marrow, cerebrospinal fluid, as well as homogenized solid tissues like lymph nodes. The detailed phenotypic features of the analyzed cells depend on the number of simultaneously used monoclonal antibodies, which is in turn dependent on the flow cytometer specification. Flow cytometric assays, particularly immunophenotyping, have broad clinical applications, especially in the diagnostics of hematological malignancies (e.g., acute lymphoblastic leukemia—ALL, acute myeloid leukemia—AML and chronic lymphoproliferative disorders—CLPD), based on precise determination of the lineage, maturation stage and phenotypic aberrancies of tumor versus normal/reactive cells.

Keywords

Acute Myeloid Leukemia Acute Lymphoblastic Leukemia Mantle Cell Lymphoma Burkitt Lymphoma Hairy Cell Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH, Davi F, Landman-Parker J, Quartier P, Buzyn A, Delabesse E, Valensi F, Macintyre E (2003) Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 101:2693–2703PubMedCrossRefGoogle Scholar
  2. Barrena S, Almeida J, Del Carmen Garcia-Macias M, Lopez A, Rasillo A, Sayagues JM, Rivas RA, Gutierrez ML, Ciudad J, Flores T, Balanzategui A, Caballero MD, Orfao A (2011) Flow cytometry immunophenotyping of fine-needle aspiration specimens: utility in the diagnosis and classification of non-Hodgkin lymphomas. Histopathology 58:906–918. doi: 10.1111/j.1365-2559.2011.03804.x Google Scholar
  3. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van’t Veer MB (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9:1783–1786PubMedGoogle Scholar
  4. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103:620–625PubMedGoogle Scholar
  5. Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K (2011) Peripheral T-cell lymphoma. Blood 117:6756–6767PubMedCrossRefGoogle Scholar
  6. Givan AL (2004) Flow cytometry: an introduction. Methods Mol Biol 263:1–32PubMedGoogle Scholar
  7. Gorczyca W, Weisberger J, Liu Z, Tsang P, Hossein M, Wu CD, Dong H, Wong JY, Tugulea S, Dee S, Melamed MR, Darzynkiewicz Z (2002) An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry 50:177–190PubMedCrossRefGoogle Scholar
  8. Greaves MF, Janossy G, Peto J, Kay H (1981) Immunologically defined subclasses of acute lymphoblastic leukemia in children: their relationship to presentation features and prognosis. Br J Hematol 48:179–197Google Scholar
  9. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48:1819–1827PubMedGoogle Scholar
  10. Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematol Am Soc Hematol Educ Program 113:523–531Google Scholar
  11. Karube K, Aoki R, Nomura Y, Yamamoto K, Shimizu K, Yoshida S, Komatani H, Sugita Y, Ohshima K (2008) Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases. Pathol Int 58:89–97PubMedCrossRefGoogle Scholar
  12. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042PubMedGoogle Scholar
  13. Mahnke YD, Roederer M (2007) Optimizing a multicolor immunophenotyping assay. Clin Lab Med 27:469–485PubMedCrossRefGoogle Scholar
  14. Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW, Hamblin TJ, Staudt LM, Oscier DG (2004) ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 363:105–111PubMedCrossRefGoogle Scholar
  15. Orfao A, Ortuño F, de Santiago M, Lopez A, San Miguel J (2004) Immunophenotyping of acute leukemias and myelodysplastic syndromes. Cytometry A 58:62–71PubMedCrossRefGoogle Scholar
  16. Orfao A, Lopez A, Flores J, Almeida J, Vidriales BM, Perez J, Kneba M, Macintyre E, Parreira A, Richards S, Szczepański T, Trka J, van der Velden VHJ, van Dongen JJM (2006) Diagnosis of haematological malignancies: new applications for flow cytometry. Hematology 5:6–13 (Education Program of the 11th Congress of the European Hematology Association, Amsterdam, The Netherlands June 15–18, 2006)Google Scholar
  17. Palumbo GA, Parrinello N, Fargione G, Cardillo K, Chiarenza A, Berretta S, Conticello C, Villari L, Di Raimondo F (2009) CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res 33:1212–1216PubMedCrossRefGoogle Scholar
  18. Porwit-MacDonald A, Björklund E, Lucio P, van Lochem EG, Mazur J, Parreira A, van den Beemd MW, van Wering ER, Baars E, Gaipa G, Biondi A, Ciudad J, van Dongen JJ, San Miguel JF, Orfao A (2000) BIOMED-1 concerted action report: flow cytometric characterization of CD7 + cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 14:816–825PubMedCrossRefGoogle Scholar
  19. Radcliff G, Jaroszeski MJ (1998) Basics of flow cytometry. Methods Mol Biol 91:1–24PubMedGoogle Scholar
  20. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) WHO classification of tumours of haematopoietic and lymphoid tissues (4th ed). IARC, Lyon, FranceGoogle Scholar
  21. Szczepański T, Orfao A, van der Velden VHJ, San Miguel JF, van Dongen JJ (2001) Minimal residual disease in leukaemia patients. Lancet Oncol 2:409–417PubMedCrossRefGoogle Scholar
  22. Szczepański T, van der Velden VHJ, van Dongen JJM (2003) Classification systems for acute and chronic leukaemias. Best Pract Res Clin Haematol 16:561–582PubMedCrossRefGoogle Scholar
  23. Szczepański T, van der Velden VHJ, van Dongen JJM (2006) Flow-cytometric immunophenotyping of normal and malignant lymphocytes. Clin Chem Lab Med 44:775–796PubMedGoogle Scholar
  24. Van Wering ER, van Lochem EG, Leenders M, van der Sluijs-Gelling AJ, Wind H, Gratama JW, Kraan J, Preijers FW (2004) Three-color flowcytometric analysis of mature and immature hematological malignancies. A guideline of the Dutch Foundation for Immunophenotyping of Hematological Malignancies (SIHON). J Biol Regul Homeost Agents 18:313–326PubMedGoogle Scholar
  25. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951PubMedCrossRefGoogle Scholar
  26. Wood B (2007) Myeloid malignancies: myelodysplastic syndromes, myeloproliferative disorders, and acute myeloid leukemia. Clin Lab Med 27:551–575PubMedCrossRefGoogle Scholar
  27. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, Boumsell L, Buckley CD, Bühring HJ, Clark G, Engel P, Fox D, Jin BQ, Macardle PJ, Malavasi F, Mason D, Stockinger H, Yang X, Stockinger H, Yang X (2007) CD molecules 2006—human cell differentiation molecules. J Immunol Methods 319:1–5Google Scholar
  28. Zucchetto A, Bomben R, Dal Bo M, Bulian P, Benedetti D, Nanni P, Del Poeta G, Degan M, Gattei V (2006) CD49d in B-cell chronic lymphocytic leukemia: correlated expression with CD38 and prognostic relevance. Leukemia 20:523–525PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Łukasz Sędek
    • 1
  • Juan Flores-Montero
    • 2
  • Joanna Bulsa
    • 1
  • Susana Barrena
    • 2
  • Julia Almeida
    • 2
  • Alberto Orfao
    • 2
  • Tomasz Szczepański
    • 1
  1. 1.Department of Pediatric Hematology and OncologyMedical University of SilesiaZabrzePoland
  2. 2.Department of MedicineCancer Research Center (IBMCC-CSIC-USAL) and Cytometry Service, University of SalamancaSalamancaSpain

Personalised recommendations