Assessment of the Presence and the Level of BCR-ABL Fusion Gene Expression and Mutational Status in ABL Kinase Domain

  • Sylwia Czekalska
  • Magdalena Zawada
  • Izabela Florek
Chapter
Part of the Principles and Practice book series (PRINCIPLES)

Abstract

In this chapter, selected molecular methods currently widely applied for the diagnostics and assessment of minimal residual disease (MRD) in patients with chronic myelogenous leukemia (CML) are presented. At the time of diagnosis, the qualitative RT-PCR method is employed. It allows for the identification of the type of BCR-ABL fusion gene. During follow-up, the quantitative RQ-PCR analysis is used for monitoring the kinetics of changes in the BCR-ABL fusion gene expression level. The results of these analyses might indicate the need for therapy modification. In case of undetectable BCR-ABL fusion gene levels in RQ-PCR, a more sensitive approach, nested RT-PCR, might be performed. In case of lack or loss of molecular response, the assessment of mutational status of ABL kinase domain is required.

Keywords

Chronic Myelogenous Leukemia Minimal Residual Disease Chronic Myelogenous Leukemia Patient Murine Leukemia Viral Oncogene Transcript E1a2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Borrow J (2007) Guidelines for mutation analysis of BCR/ABL kinase domain: interpreting TKI-resistance mutations in CML patients. West Midlands Regional Genetics Laboratory. Available via http://www.bwhct.nhs.uk/tki_sensitivities_final.pdf. Cited 9 Dec 2011
  2. Branford S, Hughes T (2006) Detection of BCR-ABL mutations and resistance to imatinib mesylate. Methods Mol Med 125:93–106PubMedGoogle Scholar
  3. Branford S, Cross NC, Hochhaus A, Radich J, Saglio G, Kaeda J, Goldman J, Hughes T (2006) Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 20:1925–1930PubMedCrossRefGoogle Scholar
  4. Ernst T, Hoffmann J, Erben P, Hanfstein B, Leitner A, Hehlmann R, Hochhaus A, Müller MC (2008) ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica 93:1389–1393PubMedCrossRefGoogle Scholar
  5. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJ (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia 17:2318–2357PubMedCrossRefGoogle Scholar
  6. Hughes T, Branford S (2006) Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev 20:29–41PubMedCrossRefGoogle Scholar
  7. Hughes T, Branford S (2009) Monitoring disease response to tyrosine kinase inhibitor therapy in CML. Hematol Am Soc Hematol Educ Program 477-87Google Scholar
  8. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37PubMedCrossRefGoogle Scholar
  9. Jones D, Kamel-Reid S, Bahler D, Dong H, Elenitoba-Johnson K, Press R, Quigley N, Rothberg P, Sabath D, Viswanatha D, Weck K, Zehnder J (2009) Laboratory practice guidelines for detecting and reporting BCR-ABL drug resistance mutations in chronic myelogenous leukemia and acute lymphoblastic leukemia: a report of the Association for Molecular Pathology. J Mol Diagn 11:4–11PubMedCrossRefGoogle Scholar
  10. Martinelli G, Soverini S, Rosti G, Cilloni D, Baccarani M (2005) New tyrosine kinase inhibitors in chronic myeloid leukemia. Haematologica 90:534–541PubMedGoogle Scholar
  11. Müller MC, Cross NC, Erben P, Schenk T, Hanfstein B, Ernst T, Hehlmann R, Branford S, Saglio G, Hochhaus A (2009) Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 23:1957–1963PubMedCrossRefGoogle Scholar
  12. Shah NP, Sawyers CL (2003) Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 20(22):7389–7395CrossRefGoogle Scholar
  13. Stentoft J, Pallisgaard N, Kjeldsen E, Holm MS, Nielsen JL, Hokland P (2001) Kinetics of BCR-ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real- time polymerase chain reaction. Eur J Haematol 67:302–308PubMedCrossRefGoogle Scholar
  14. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P, Diáz MG, Malec M, Langerak AW, San Miguel JF, Biondi A (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukaemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukaemia. Leukemia 13:1901–1928PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sylwia Czekalska
    • 1
  • Magdalena Zawada
    • 1
  • Izabela Florek
    • 1
  1. 1.Department of HematologyJagiellonian University Medical CollegeKrakówPoland

Personalised recommendations