Belief Function Robustness in Estimation

  • Alessio BenavoliEmail author
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)


We consider the case in which the available knowledge does not allow to specify a precise probabilistic model for the prior and/or likelihood in statistical estimation. We assume that this imprecision can be represented by belief functions. Thus, we exploit the mathematical structure of belief functions and their equivalent representation in terms of closed convex sets of probability measures to derive robust posterior inferences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dempster, A.P.: Upper and lower probabilities induced by a multiple-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)Google Scholar
  3. 3.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, New York (1991)zbMATHGoogle Scholar
  4. 4.
    Miranda, E., de Cooman, G., Couso, I.: Lower previsions induced by multi-valued mappings. Journal of Statistical Planning and Inference 133(1), 173–197 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Wasserman, L.A.: Prior envelopes based on belief functions. The Annals of Statistics 18(1), 454–464 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Wasserman, L.A.: Belief functions and statistical inference. The Canadian Journal of Statistics 18(3), 183–196 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Molchanov, I.: Theory of random sets. Springer (2005)Google Scholar
  8. 8.
    Benavoli, A., Zaffalon, M., Miranda, E.: Robust filtering through coherent lower previsions. IEEE Transactions on Automatic Control 56, 1567–1581 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Schweppe, F.C.: Recursive state estimation: Unknown but bounded errors and system inputs. In: Sixth Symposium on Adaptive Processes, vol. 6, pp. 102–107 (1967)Google Scholar
  10. 10.
    Bertsekas, D., Rhodes, I.: Recursive state estimation for a set-membership description of uncertainty. IEEE Transactions on Automatic Controll 16, 117–128 (1971)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics, New York (1985)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)MannoSwitzerland

Personalised recommendations