Conflict, Consistency and Truth-Dependencies in Graph Representations of Answer Set Logic Programs

  • Stefania Costantini
  • Alessandro Provetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7205)

Abstract

In this paper, we propose a formalization of the features that a graph representation of logic programs under the answers set semantics should in our opinion exhibit in order to be a satisfactory and useful representation formalism. We introduce a concept of isomorphism (or structural equivalence) between a program and its corresponding graph. We argue that isomorphic representations can be a good software engineering tool for understanding program behavior, for checking consistency, for being able to create, debug and combine good programs, and for developing program analysis techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anger, C., Schaub, T., Truszczyński, M.: ASPARAGUS – the Dagstuhl Initiative. ALP Newsletter 17(3) (2004), http://asparagus.cs.uni-potsdam.de
  2. 2.
    Anger, C., Konczak, K., Linke, T.: NoMoRe: A System for Non-Monotonic Reasoning under Answer Set Semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 406–410. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. J. of Logic Programming 19/20, 9–72 (1994)Google Scholar
  4. 4.
    Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press (2003)Google Scholar
  5. 5.
    Berge, G.: Graphs and Hypergraphs. North Holland, Amsterdam (1973)MATHGoogle Scholar
  6. 6.
    Brignoli, G., Costantini, S., D’Antona, O., Provetti, A.: Characterizing and computing stable models of logic programs: the non–stratified case. In: Proc. of Conference on Information Technology, Bhubaneswar, India (1999)Google Scholar
  7. 7.
    Bruynooghe, M.: A practical framework for the abstract interpretation of logic programs. Journal of Logic Programming 10(2), 91 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bruynooghe, M., Janssens, G.: Propagation: A New Operation in a Framework for Abstract Interpretation of Logic Programs. In: Pettorossi, A. (ed.) META 1992. LNCS, vol. 649, pp. 294–307. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Costantini, S.: Contributions to the stable model semantics of logic programs with negation. Theoretical Computer Science 149 (1995) (prelim. version in Proc. of LPNMR 1993)Google Scholar
  10. 10.
    Costantini, S.: Comparing different graph representations of logic programs under the answer set semantics, technical Report, University of L’ Aquila (2006)Google Scholar
  11. 11.
    Costantini, S.: On the existence of stable models of non-stratified logic programs. Theory and Practice of Logic Programming 6(1-2) (2006)Google Scholar
  12. 12.
    Costantini, S., Intrigila, B., Provetti, A.: Coherence of updates in answer set programming. In: Brewka, G., Peppas, P. (eds.) Proceedings of the IJCAI 2003 Workshop on Nonmonotonic Reasoning, Action and Change, NRAC 2003 (2003)Google Scholar
  13. 13.
    Costantini, S., Provetti, A.: Normal forms for answer sets programming. J. on Theory and Practice of Logic Programming 5(6) (2005)Google Scholar
  14. 14.
    Costantini, S., Provetti, A.: Normal forms for Answer Sets Programming. Theory and Practice of Logic Programming 5(6), 747–760 (2005)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Delgrande, J.P., Faber, W. (eds.): LPNMR 2011. LNCS, vol. 6645. Springer, Heidelberg (2011)MATHGoogle Scholar
  16. 16.
    Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theoretical Computer Science 170, 209–244 (1996)MathSciNetMATHGoogle Scholar
  17. 17.
    Febbraro, O., Reale, K., Ricca, F.: Aspide: Integrated development environment for answer set programming. In: Delgrande, Faber [15], pp. 317–330Google Scholar
  18. 18.
    Gebser, M., Schaub, T.: Loops: Relevant or Redundant? In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 53–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proc. of the 5th Intl. Conference and Symposium on Logic Programming, pp. 1070–1080. The MIT Press (1988)Google Scholar
  20. 20.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  21. 21.
    Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, ch. 7. Elsevier (2007)Google Scholar
  22. 22.
    Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.J.: Incremental analysis of constraint logic programs. ACM Trans. Program. Lang. Syst. 22(2), 187–223 (2000)CrossRefGoogle Scholar
  23. 23.
    Konczak, K., Schaub, T., Linke, T.: Graphs and colorings for answer set programming: Abridged report. In: Vos, M.D., Provetti, A. (eds.) Answer Set Programming: Advances in Theory and Implementation, ASP 2003. The CEUR Workshop Proceedings, vol. 78 (2003), http://eur-ws.org/Vol-78/
  24. 24.
    Leone, N.: Logic Programming and Nonmonotonic Reasoning: From Theory to Systems and Applications. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, p. 1. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Lifschitz, V.: Answer set planning. In: Proc. of the 16th Intl. Conference on Logic Programming, pp. 23–37 (1999)Google Scholar
  26. 26.
    Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic 7 (2006)Google Scholar
  27. 27.
    Lin, F., Zhao, X.: On odd and even cycles in normal logic programs. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI, pp. 80–85. AAAI Press/The MIT Press (2004)Google Scholar
  28. 28.
    Linke, T.: Graph theoretical characterization and computation of answer sets. In: Proceedings of IJCAI 2001 (2001)Google Scholar
  29. 29.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)MATHCrossRefGoogle Scholar
  30. 30.
    Marek, V.W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3), 587–618 (1991)CrossRefGoogle Scholar
  31. 31.
    Marek, V.W., Truszczyński, M.: Stable logic programming - an alternative logic programming paradigm, pp. 375–398. Springer, Berlin (1999)Google Scholar
  32. 32.
    Oetsch, J., Pührer, J., Seidl, M., Tompits, H., Zwickl, P.: Videas: A development tool for answer-set programs based on model-driven engineering technology. In: Delgrande, Faber [15], pp. 382–387Google Scholar
  33. 33.
    Przymusinska, H., Przymusinski, T.C.: Semantic issues in deductive databases and logic programs (1990)Google Scholar
  34. 34.
    Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3), 121–189 (1995)Google Scholar
  35. 35.
    Truszczyński, M.: Logic Programming for Knowledge Representation. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 76–88. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    VanGelder, A., Ross, K.A., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefania Costantini
    • 1
  • Alessandro Provetti
    • 2
  1. 1.Dip. d’InformaticaUniversità di L’AquilaItaly
  2. 2.Dip. di Fisica, Sez. d’InformaticaUniversità di MessinaItaly

Personalised recommendations