Advertisement

Targeting Phosphodiesterases in Anti-platelet Therapy

  • Matthew T. Rondina
  • Andrew S. WeyrichEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 210)

Abstract

There are two primary modes of platelet inhibition: blockade of membrane receptors or neutralization of intracellular pathways. Both means of inhibition have proven benefits in the prevention and resolution of atherothrombotic events. With regard to intracellular inhibition, phosphodiesterases (PDEs) are fundamental for platelet function. Platelets possess several PDEs (PDE2, PDE3 and PDE5) that catalyze the hydrolysis of cyclic adenosine 3′-5′-monophosphate (cAMP) and cyclic guanosine 3′-5′-monophosphate (cGMP), thereby limiting the levels of intracellular nucleotides. PDE inhibitors, such as cilostazol and dipyridamole, dampen platelet function by increasing cAMP and cGMP levels. This review focuses on the roles of PDE inhibitors in modulating platelet function, with particular attention paid to drugs that have anti-platelet clinical indications.

Keywords

Phosphodiesterase Platelet Thrombosis Anti-Platelet Agents Cilostazol Dipyridamole 

References

  1. Adams RJ, Albers G, Alberts MJ et al (2008) Update to the AHA/ASA recommendations for the prevention of stroke in patients with stroke and transient ischemic attack. Stroke 39:1647–1652PubMedCrossRefGoogle Scholar
  2. Ahn HS, Crim W, Romano M et al (1989) Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochem Pharmacol 38:3331–3339PubMedCrossRefGoogle Scholar
  3. Akiyama H, Kudo S, Shimizu T et al (1985) The metabolism of a new antithrombotic and vasodilating agent, cilostazol, in rat, dog and man. Arzneimittelforschung 35:1133–1140PubMedGoogle Scholar
  4. Aktas B, Utz A, Hoenig-Liedl P et al (2003) Dipyridamole enhances NO/cGMP-mediated vasodilator-stimulated phosphoprotein phosphorylation and signaling in human platelets: in vitro and in vivo/ex vivo studies. Stroke 34:764–769PubMedCrossRefGoogle Scholar
  5. Aravind L, Ponting CP et al (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459PubMedCrossRefGoogle Scholar
  6. Beavo JA et al (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75:725–748PubMedGoogle Scholar
  7. Bender AT, Beavo JA et al (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520PubMedCrossRefGoogle Scholar
  8. Berkels R, Klotz T, Sticht G et al (2001) Modulation of human platelet aggregation by the phosphodiesterase type 5 inhibitor sildenafil. J Cardiovasc Pharmacol 37:413–421PubMedCrossRefGoogle Scholar
  9. Bramer SL, Forbes WP, Mallikaarjun S et al (1999) Cilostazol pharmacokinetics after single and multiple oral doses in healthy males and patients with intermittent claudication resulting from peripheral arterial disease. Clin Pharmacokinet 37(Suppl 2):1–11PubMedCrossRefGoogle Scholar
  10. Brito FC, Kummerle AE, Lugnier C et al (2010) Novel thienylacylhydrazone derivatives inhibit platelet aggregation through cyclic nucleotides modulation and thromboxane A2 synthesis inhibition. Eur J Pharmacol 638:5–12PubMedCrossRefGoogle Scholar
  11. Chakrabarti S, Freedman JE et al (2008) Dipyridamole, cerebrovascular disease, and the vasculature. Vascul Pharmacol 48:143–149PubMedCrossRefGoogle Scholar
  12. Chesebro JH, Steele PM, Fuster V et al (1985) Platelet-inhibitor therapy in cardiovascular disease. Effective defense against thromboembolism. Postgrad Med 78(48–50):57–71Google Scholar
  13. Choi YH, Ekholm D, Krall J et al (2001) Identification of a novel isoform of the cyclic-nucleotide phosphodiesterase PDE3A expressed in vascular smooth-muscle myocytes. Biochem J 353:41–50PubMedCrossRefGoogle Scholar
  14. Colman RW et al (2004) Platelet cyclic adenosine monophosphate phosphodiesterases: targets for regulating platelet-related thrombosis. Semin Thromb Hemost 30:451–460PubMedCrossRefGoogle Scholar
  15. Colucci WS et al (1991) Cardiovascular effects of milrinone. Am Heart J 121:1945–1947PubMedCrossRefGoogle Scholar
  16. Criqui MH, Fronek A, Barrett-Connor E et al (1985) The prevalence of peripheral arterial disease in a defined population. Circulation 71:510–515PubMedCrossRefGoogle Scholar
  17. Dawson DL, Cutler BS, Hiatt WR et al (2000) A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am J Med 109:523–530PubMedCrossRefGoogle Scholar
  18. De Bon E, Bonanni G, Saggiorato G et al (2010) Effects of tadalafil on platelets and endothelium in patients with erectile dysfunction and cardiovascular risk factors: a pilot study. Angiology 61:602–606PubMedCrossRefGoogle Scholar
  19. Dickinson NT, Jang EK, Haslam RJ et al (1997) Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: effects on platelet aggregation. Biochem J 323(Pt 2):371–377PubMedGoogle Scholar
  20. Diebold I, Djordjevic T, Petry A et al (2009) Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res 104:1169–1177PubMedCrossRefGoogle Scholar
  21. Diener HC, Cunha L, Forbes C et al (1996) European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci 143:1–13PubMedCrossRefGoogle Scholar
  22. Dobesh PP, Stacy ZA, Persson EL et al (2009) Pharmacologic therapy for intermittent claudication. Pharmacotherapy 29:526–553PubMedCrossRefGoogle Scholar
  23. Dunkern TR, Hatzelmann A et al (2005) The effect of Sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal 17:331–339PubMedCrossRefGoogle Scholar
  24. Eisert WG (2007) Dipyridamole. In: Michelson AD (ed) Platelets. Academic, San Diego, CA, pp 1165–1179CrossRefGoogle Scholar
  25. Eldor A, Vlodavsky I, Fuks Z et al (1986) Different effects of aspirin, dipyridamole and UD-CG 115 on platelet activation in a model of vascular injury: studies with extracellular matrix covered with endothelial cells. Thromb Haemost 56:333–339PubMedGoogle Scholar
  26. Faxon DP, Creager MA, Smith SC Jr et al (2004) Atherosclerotic Vascular Disease Conference: Executive summary: Atherosclerotic Vascular Disease Conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 109:2595–2604PubMedCrossRefGoogle Scholar
  27. Francis SH, Bessay EP, Kotera J et al (2002) Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. J Biol Chem 277:47581–47587PubMedCrossRefGoogle Scholar
  28. Francis SH, Blount MA, Corbin JD et al (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91:651–690PubMedCrossRefGoogle Scholar
  29. Franks ZG, Campbell RA, Weyrich AS et al (2010) Platelet-leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke. Ann N Y Acad Sci 1207:11–17PubMedCrossRefGoogle Scholar
  30. Ge J, Han Y, Jiang H et al (2005) RACTS: a prospective randomized antiplatelet trial of cilostazol versus ticlopidine in patients undergoing coronary stenting: long-term clinical and angiographic outcome. J Cardiovasc Pharmacol 46:162–166PubMedCrossRefGoogle Scholar
  31. Grant PG, Colman RW et al (1984) Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry 23:1801–1807PubMedCrossRefGoogle Scholar
  32. Grant PG, Mannarino AF, Colman RW et al (1988) cAMP-mediated phosphorylation of the low-Km cAMP phosphodiesterase markedly stimulates its catalytic activity. Proc Natl Acad Sci USA 85:9071–9075PubMedCrossRefGoogle Scholar
  33. Grant PG, Mannarino AF, Colman RW et al (1990) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from the cytosol of human platelets. Thromb Res 59:105–119PubMedCrossRefGoogle Scholar
  34. Gresele P, Zoja C, Deckmyn H et al (1983) Dipyridamole inhibits platelet aggregation in whole blood. Thromb Haemost 50:852–856PubMedGoogle Scholar
  35. Gresele P, Arnout J, Deckmyn H et al (1986) Mechanism of the antiplatelet action of dipyridamole in whole blood: modulation of adenosine concentration and activity. Thromb Haemost 55:12–18PubMedGoogle Scholar
  36. Gresele P, Momi S, Falcinelli E et al (2011) Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 72(4):634–646PubMedCrossRefGoogle Scholar
  37. Halcox JP, Nour KR, Zalos G et al (2002) The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol 40:1232–1240PubMedCrossRefGoogle Scholar
  38. Halkes PH, van Gijn J, Kappelle LJ et al (2006) Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet 367:1665–1673PubMedCrossRefGoogle Scholar
  39. Han Y, Li Y, Wang S et al (2009) Cilostazol in addition to aspirin and clopidogrel improves long-term outcomes after percutaneous coronary intervention in patients with acute coronary syndromes: a randomized, controlled study. Am Heart J 157:733–739PubMedCrossRefGoogle Scholar
  40. Haslam RJ, Davidson MM, Davies T et al (1978) Regulation of blood platelet function by cyclic nucleotides. Adv Cyclic Nucleotide Res 9:533–552PubMedGoogle Scholar
  41. Haslam RJ, Dickinson NT, Jang EK et al (1999) Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemost 82:412–423PubMedGoogle Scholar
  42. Hiatt WR et al (2005) The US experience with cilostazol in treating intermittent claudication. Atheroscler Suppl 6:21–31PubMedCrossRefGoogle Scholar
  43. Hidaka H, Asano T et al (1976) Human blood platelet 3′: 5′-cyclic nucleotide phosphodiesterase. Isolation of low-Km and high-Km phosphodiesterase. Biochim Biophys Acta 429:485–497PubMedCrossRefGoogle Scholar
  44. Hunter RW, Mackintosh C, Hers I et al (2009) Protein kinase C-mediated phosphorylation and activation of PDE3A regulate cAMP levels in human platelets. J Biol Chem 284:12339–12348PubMedCrossRefGoogle Scholar
  45. Igawa T, Tani T, Chijiwa T et al (1990) Potentiation of anti-platelet aggregating activity of cilostazol with vascular endothelial cells. Thromb Res 57:617–623PubMedCrossRefGoogle Scholar
  46. Ito M, Nishikawa M, Fujioka M et al (1996) Characterization of the isoenzymes of cyclic nucleotide phosphodiesterase in human platelets and the effects of E4021. Cell Signal 8:575–581PubMedCrossRefGoogle Scholar
  47. Jennings DL, Kalus JS et al (2010) Addition of cilostazol to aspirin and a thienopyridine for prevention of restenosis after coronary artery stenting: a meta-analysis. J Clin Pharmacol 50:415–421PubMedCrossRefGoogle Scholar
  48. Jung WK, Lee DY, Park C et al (2010) Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. Br J Pharmacol 159:1274–1285PubMedCrossRefGoogle Scholar
  49. Kariyazono H, Nakamura K, Shinkawa T et al (2001) Inhibition of platelet aggregation and the release of P-selectin from platelets by cilostazol. Thromb Res 101:445–453PubMedCrossRefGoogle Scholar
  50. Kass DA, Champion HC, Beavo JA et al (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101:1084–1095PubMedCrossRefGoogle Scholar
  51. Kasuya J, Goko H, Fujita-Yamaguchi Y et al (1995) Multiple transcripts for the human cardiac form of the cGMP-inhibited cAMP phosphodiesterase. J Biol Chem 270:14305–14312PubMedCrossRefGoogle Scholar
  52. Klabunde RE et al (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 93:21–26PubMedCrossRefGoogle Scholar
  53. Lima LM, Ormelli CB, Brito FF et al (1999) Synthesis and antiplatelet evaluation of novel aryl-sulfonamide derivatives, from natural safrole. Pharm Acta Helv 73:281–292PubMedCrossRefGoogle Scholar
  54. Lin CS, Lin G, Xin ZC et al (2006) Expression, distribution and regulation of phosphodiesterase 5. Curr Pharm Des 12:3439–3457PubMedCrossRefGoogle Scholar
  55. Macphee CH, Reifsnyder DH, Moore TA et al (1988) Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. J Biol Chem 263:10353–10358PubMedGoogle Scholar
  56. Masciarelli S, Horner K, Liu C et al (2004) Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility. J Clin Invest 114:196–205PubMedGoogle Scholar
  57. Maurice DH, Haslam RJ et al (1990) Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 37:671–681PubMedGoogle Scholar
  58. Muggli R, Tschopp TB, Mittelholzer E et al (1985) 7-Bromo-1,5-dihydro-3,6-dimethylimidazo[2,1-b]quinazolin-2(3H)- one (Ro 15-2041), a potent antithrombotic agent that selectively inhibits platelet cyclic AMP-phosphodiesterase. J Pharmacol Exp Ther 235:212–219PubMedGoogle Scholar
  59. Neri Serneri GG, Masotti G, Poggesi L et al (1981) Enhanced prostacyclin production by dipyridamole in man. Eur J Clin Pharmacol 21:9–15PubMedCrossRefGoogle Scholar
  60. Nishio Y, Kashiwagi A, Takahara N et al (1997) Cilostazol, a cAMP phosphodiesterase inhibitor, attenuates the production of monocyte chemoattractant protein-1 in response to tumor necrosis factor-alpha in vascular endothelial cells. Horm Metab Res 29:491–495PubMedCrossRefGoogle Scholar
  61. Okuda YKY, Yamashita K et al (1993) Cilostazol. Cardiovascu Drug Rev 11:451–465CrossRefGoogle Scholar
  62. Omori K, Kotera J et al (2007) Overview of PDEs and their regulation. Circ Res 100:309–327PubMedCrossRefGoogle Scholar
  63. Palmer D, Maurice DH et al (2000) Dual expression and differential regulation of phosphodiesterase 3A and phosphodiesterase 3B in human vascular smooth muscle: implications for phosphodiesterase 3 inhibition in human cardiovascular tissues. Mol Pharmacol 58:247–252PubMedGoogle Scholar
  64. Pratt CM et al (2001) Analysis of the cilostazol safety database. Am J Cardiol 87:28D–33DPubMedCrossRefGoogle Scholar
  65. Rowley JW, Oler AJ, Tolley ND et al (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118:e101–e111PubMedCrossRefGoogle Scholar
  66. Russwurm C, Zoidl G, Koesling D et al (2009) Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes. J Biol Chem 284:25782–25790PubMedCrossRefGoogle Scholar
  67. Sacco RL, Diener HC, Yusuf S et al (2008) Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med 359:1238–1251PubMedCrossRefGoogle Scholar
  68. Schror K et al (2002) The pharmacology of cilostazol. Diabetes Obes Metab 4(Suppl 2):S14–S19PubMedCrossRefGoogle Scholar
  69. Seiler S, Arnold AJ, Grove RI et al (1987) Effects of anagrelide on platelet cAMP levels, cAMP-dependent protein kinase and thrombin-induced Ca++ fluxes. J Pharmacol Exp Ther 243:767–774PubMedGoogle Scholar
  70. Shakur Y, Holst LS, Landstrom TR et al (2001) Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol 66:241–277PubMedCrossRefGoogle Scholar
  71. Shinohara Y, Katayama Y, Uchiyama S et al (2010) Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol 9:959–968PubMedCrossRefGoogle Scholar
  72. Silverstein MN, Petitt RM, Solberg LA Jr et al (1988) Anagrelide: a new drug for treating thrombocytosis. N Engl J Med 318:1292–1294PubMedCrossRefGoogle Scholar
  73. Stein PD, Alpert JS, Dalen JE et al (1998) Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 114:602S–610SPubMedCrossRefGoogle Scholar
  74. Stephenson DT, Coskran TM, Wilhelms MB et al (2009) Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J Histochem Cytochem 57:933–949PubMedCrossRefGoogle Scholar
  75. Suh JW, Lee SP, Park KW et al (2011) Multicenter randomized trial evaluating the efficacy of cilostazol on ischemic vascular complications after drug-eluting stent implantation for coronary heart disease: results of the CILON-T (influence of CILostazol-based triple antiplatelet therapy ON ischemic complication after drug-eluting stenT implantation) trial. J Am Coll Cardiol 57:280–289PubMedCrossRefGoogle Scholar
  76. Sun B, Li H, Shakur Y et al (2007) Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal 19:1765–1771PubMedCrossRefGoogle Scholar
  77. Tani T, Sakurai K, Kimura Y et al (1992) Pharmacological manipulation of tissue cyclic AMP by inhibitors. Effects of phosphodiesterase inhibitors on the functions of platelets and vascular endothelial cells. Adv Second Messenger Phosphoprotein Res 25:215–227PubMedGoogle Scholar
  78. Theis JG, Deichsel G, Marshall S et al (1999) Rapid development of tolerance to dipyridamole-associated headaches. Br J Clin Pharmacol 48:750–755PubMedCrossRefGoogle Scholar
  79. Thompson PD, Zimet R, Forbes WP et al (2002) Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am J Cardiol 90:1314–1319PubMedCrossRefGoogle Scholar
  80. van Ryn J, Lorenz M, Merk H et al (2003) Accumulation of radiolabelled platelets and fibrin on the carotid artery of rabbits after angioplasty: effects of heparin and dipyridamole. Thromb Haemost 90:1179–1186PubMedGoogle Scholar
  81. Venkatesh PK, Pattillo CB, Branch B et al (2010) Dipyridamole enhances ischaemia-induced arteriogenesis through an endocrine nitrite/nitric oxide-dependent pathway. Cardiovasc Res 85:661–670PubMedCrossRefGoogle Scholar
  82. Verro P, Gorelick PB, Nguyen D et al (2008) Aspirin plus dipyridamole versus aspirin for prevention of vascular events after stroke or TIA: a meta-analysis. Stroke 39:1358–1363PubMedCrossRefGoogle Scholar
  83. Wallis RM, Corbin JD, Francis SH et al (1999) Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 83:3C–12CPubMedCrossRefGoogle Scholar
  84. Wang F, Li M, Cheng L et al (2008) Intervention with cilostazol attenuates renal inflammation in streptozotocin-induced diabetic rats. Life Sci 83:828–835PubMedCrossRefGoogle Scholar
  85. Wechsler J, Choi YH, Krall J et al (2002) Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem 277:38072–38078PubMedCrossRefGoogle Scholar
  86. Weyrich AS, Denis MM, Kuhlmann-Eyre JR et al (2005) Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates. Circulation 111:633–642PubMedCrossRefGoogle Scholar
  87. Weyrich AS, Kraiss LW, Prescott SM et al (2006) New roles for an old drug: inhibition of gene expression by dipyridamole in platelet-leukocyte aggregates. Trends Cardiovasc Med 16:75–80PubMedCrossRefGoogle Scholar
  88. Yamagami H, Sakai N, Matsumaru Y et al (2012) Periprocedural cilostazol treatment and restenosis after carotid artery stenting: The Retrospective Study of In-Stent Restenosis after Carotid Artery Stenting (ReSISteR-CAS). J Stroke Cerebrovasc Dis 21(3):193–199PubMedCrossRefGoogle Scholar
  89. Yang Q, Paskind M, Bolger G et al (1994) A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem Biophys Res Commun 205:1850–1858PubMedCrossRefGoogle Scholar
  90. Yoo HD, Cho HY, Lee YB et al (2010) Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1. Br J Clin Pharmacol 69:27–37PubMedCrossRefGoogle Scholar
  91. Zoraghi R, Corbin JD, Francis SH et al (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278PubMedCrossRefGoogle Scholar
  92. Zoraghi R, Bessay EP, Corbin JD et al (2005) Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. J Biol Chem 280:12051–12063PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.The Molecular Medicine Program and Department of Internal MedicineUniversity of UtahSalt Lake CityUSA
  2. 2.Eccles Institute of Human GeneticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations