Advertisement

Inhibitors of the Interaction Between von Willebrand Factor and Platelet GPIb/IX/V

  • Paolo GreseleEmail author
  • Stefania Momi
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 210)

Abstract

The formation of platelet-rich thrombi, a critical step in the pathogenesis of atherothrombotic events, is a multistep process involving several components, among which von Willebrand Factor (VWF) plays a central role. Ruptured atherosclerotic plaques expose subendothelial matrix proteins which bind VWF that represents a bridge between the injured blood vessel and activated platelets, playing a crucial role in platelet adhesion and aggregation, especially in conditions of high-shear rate. Due to these peculiarities, the binding of VWF to GPIbα is an attractive drug target. Here we summarize the present knowledge on the different classes of drugs targeting the VWF–GPIb interaction and we give an account of their level of clinical development. In particular, the following compounds are discussed: AJW200, an IgG4 humanized monoclonal antibody against VWF-A1; 82D6A3, a monoclonal antibody against VWF-A3; ALX-0081 and ALX-0681, bivalent humanized nanobodies targeting the VWF-A1 domain; ARC1779 and its advanced formulation ARC15105, second-generation aptamers that bind the VWF-A1 domain; h6B4-Fab, a murine monoclonal antibody, and GPG-290, a recombinant chimeric protein, both directed against GPIbα.

Keywords

Glycoprotein Ib/IX/V von Willebrand factor Nanobody Aptamer Platelets Thrombosis Shear stress Stroke Acute coronary syndromes Antiplatelet 

References

  1. Beacham DA, Wise RJ, Turci SM et al (1992) Selective inactivation of the Arg-Gly-Asp-Ser (RGDS) binding site in von Willebrand factor by site-directed mutagenesis. J Biol Chem 267:3409–3415PubMedGoogle Scholar
  2. Benz K, Amann K (2010) Thrombotic microangiopathy: new insights. Curr Opin Nephrol Hypertens 19:242–247PubMedCrossRefGoogle Scholar
  3. Bongers TN, de Bruijne EL, Dipped DW et al (2009) Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis 207:250–254PubMedCrossRefGoogle Scholar
  4. Cauwenberghs N, Meiring M, Vauterin S et al (2000) Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler Thromb Vasc Biol 20:1347–1353PubMedCrossRefGoogle Scholar
  5. Cauwenberghs N, Vanhoorelbeke K, Vauterin S et al (2001) Epitope mapping of inhibitory antibodies against platelet glycoprotein Iba reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking region domains of glycoprotein Ibα. Blood 98:652–660PubMedCrossRefGoogle Scholar
  6. Claus RA, Bockmeyer CL, Sossdorf M et al (2010) The balance between von-Willebrand factor and its cleaving protease ADAMTS13: biomarker in systemic inflammation and development of organ failure? Curr Mol Med 10:236–248PubMedCrossRefGoogle Scholar
  7. Cruz MA, Yuan H, Lee JR et al (1995) Interaction of the von Willebrand factor (VWF) with collagen. Localization of the primary collagen-binding site by analysis of recombinant VWF A domain polypeptides. J Biol Chem 270:10822–10827PubMedCrossRefGoogle Scholar
  8. Diener JL, Danile Lagasse HA, Duerchmied D et al (2009) Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemost 7:1155–1166PubMedCrossRefGoogle Scholar
  9. Du X (2007) Signaling and regulation of the glycoprotein Ib/IX/V complex. Curr Opin Hematol 14:262–269PubMedCrossRefGoogle Scholar
  10. Federici AB (2009) Classification of inherited von Willebrand Disease and implications in clinical practice. Thromb Res 124:S2–S6PubMedCrossRefGoogle Scholar
  11. Federici AB, Castaman G, Thompson A, Berntorp E (2006) Von Willebrand’s disease: clinical management. Haemophilia 12:152–158PubMedCrossRefGoogle Scholar
  12. Fontayne A, Vanhoorelbeke K, Pareyn I et al (2006) Rational humanization of the powerful antithrombotic anti GPIba antibody: 6B4. Thromb Haemost 96:671–684PubMedGoogle Scholar
  13. Fontayne A, Meiring M, Lamprecht S et al (2008) The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb Haemost 100:670–677PubMedGoogle Scholar
  14. Giannini S, Mezzasoma AM, Leone M, Gresele P (2007) Laboratory diagnosis and monitoring of desmopressin treatment of von Willebrand’s disease by flow cytometry. Haematologica 92:1647–1654PubMedCrossRefGoogle Scholar
  15. Girma JP, Takahashi Y, Yoshioka A, Diaz J, Meyer D (1990) Ristocetin and botrocetin involve two distinct domains of von Willebrand factor for binding to platelet membrane glycoprotein Ib. Thromb Haemost 64:326–332PubMedGoogle Scholar
  16. Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7:52–62Google Scholar
  17. Hennan JK, Swillo RE, Morgan GA et al (2006) Pharmacologic inhibition of platelet VWF-GPIbα interaction prevents coronary artery thrombosis. Thromb Haemost 95:469–475PubMedGoogle Scholar
  18. Holz J, Bartunek J, Barbato E et al (2009) ALX-0081 a novel anti-thrombotic: first results of a multiple dose phase 1 study in patients with stable angina undergoing PCI. J Thromb Haemost 7:PP-WE-416Google Scholar
  19. Hoylaerts M, Yamamoto H, Nuyts K et al (1997) von Willebrand factor binds to native collagen VI primarily via its A1 domain. Biochem J 324:185–191PubMedGoogle Scholar
  20. Huizinga EG, Tsuji S, Romijn RAP et al (2002) Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science 297:1176–1179PubMedCrossRefGoogle Scholar
  21. Jackson P, Nesbitt WS, Westein E (2009) Dynamics of platelet thrombus formation. J Thromb Haemost 7:17–20PubMedCrossRefGoogle Scholar
  22. Jilma B, Paulinska P, Jilma-Stohlawetz P et al (2010) A randomized pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2B von Willebrand disease. Thromb Haemost 104:563–570PubMedCrossRefGoogle Scholar
  23. Jilma-Stohlawetz P, Gilbert JC, Gorczyca ME, Knöbl P, Jilma B (2011) A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb Haemost 106:539–547PubMedCrossRefGoogle Scholar
  24. Kageyama S, Yamamoto H, Nagano M, Arisaka H, Kayahara T, Yoshimoto R (1997) Anti-thrombotic effects and bleeding risk of AJvW-2, a monoclonal antibody against human von Willebrand factor. Br J Pharmacol 122:165–171PubMedCrossRefGoogle Scholar
  25. Kageyama S, Yamamoto H, Nakazawa J et al (2002a) Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkey. Arterioscler Thromb Vasc Biol 22:187–192PubMedCrossRefGoogle Scholar
  26. Kageyama S, Matsushita J, Yamamoto H (2002b) Effect of a humanized monoclonal antibody to von Willebrand factor in a canine model of coronary arterial thrombosis. Eur J Pharmacol 443:143–149PubMedCrossRefGoogle Scholar
  27. Kunicki T, Nugent D (2002) The influence of platelet glycoprotein polymorphisms on receptor function and risk for thrombosis. Vox Sang 83(Suppl 1):85–90CrossRefGoogle Scholar
  28. Levy GG, Nichols WC, Lian EC et al (2001) Mutations in a member of the ADAMTS13 gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494PubMedCrossRefGoogle Scholar
  29. Lillicrap D (2007) Von Willebrand disease-phenotype versus genotype: deficiency versus disease. Thromb Res 120:S11–S16PubMedCrossRefGoogle Scholar
  30. Lopez JA, Andrews RK, Afshar-Kharghan V et al (1998) Bernard-Soulier syndrome. Blood 91:4397–4418PubMedGoogle Scholar
  31. Lopez JA, del Conde I, Shrimpton CN (2005) Receptors, rafts, and microvesicles in thrombosis and inflammation. J Thromb Haemost 3:1737–1744PubMedCrossRefGoogle Scholar
  32. Lowe EJ, Werner EJ (2005) Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in children and adolescent. Semin Thromb Hemost 31:717–730PubMedCrossRefGoogle Scholar
  33. Machin S, Clarke C, Ikemura O et al (2003) A humanized monoclonal antibody against VWF A1 domain inhibits VWF:RiCof activity and platelet adhesion in human volunteers. J Thromb Haemost (Suppl 1):OC328Google Scholar
  34. Mailhac A, Badimon JJ, Fallon JT et al (1994) Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrinogen and platelets. Circulation 90:988–996PubMedCrossRefGoogle Scholar
  35. Markus HS, McCollum C, Imray C et al (2011) The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy – a randomized trial. Stroke 42:2149–2153PubMedCrossRefGoogle Scholar
  36. Michaux G, Pullen TJ, Haberichter SL et al (2006) P-selectin binds to the D’-D3 domains of von Willebrand factor in Weibel-Palade bodies. Blood 107:3922–3924PubMedCrossRefGoogle Scholar
  37. Miller JL, Thiam-Cisse M, Drouet LO (1991) Reduction in thrombus formation by PG-1 F(ab’)2, an anti-guinea pig platelet glycoprotein Ib monoclonal antibody. Arterioscler Thromb Vasc Biol 11:1231–1236CrossRefGoogle Scholar
  38. Moake JL, Rudy CK, Troll JH et al (1982) Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 307:1432–1435PubMedCrossRefGoogle Scholar
  39. Momi S, Tantucci M, Van Roy M et al (2011) Selective blockade of the A1 domain of von Willebrand factor (VWF), prevents ischemic stroke in the guinea pig: comparison with the thrombolytic rtPA. J Thromb Haemost 9(Suppl 2):O-TU-098Google Scholar
  40. Montalescot G, Philippe F, Ankri A et al (1998) Early increase of von Willebrand factor predicts adverse outcome in unstable coronary artery disease: beneficial effects of enoxaparin. French Investigators of the ESSENCE Trial. Circulation 98:294–299PubMedCrossRefGoogle Scholar
  41. Nesheim M, Pittman DD, Giles AR et al (1991) The effect of plasma von Willebrand factor on the binding of human factor VIII to thrombin-activated human platelets. J Biol Chem 266:17815–17820PubMedGoogle Scholar
  42. Nillson IM, Blomback M, Jorpes E et al (1957) Von Willebrand’s disease and its correction with human plasma fraction 1-0. Acta Med Scand 159:179–188CrossRefGoogle Scholar
  43. Nilsson IM, Blomback M, Von FI (1957) On an inherited autosomal hemorrhagic diathesis with antihemophilic globulin (AHG) deficiency and prolonged bleeding time. Acta Med Scand 159:35–57PubMedCrossRefGoogle Scholar
  44. Peyvandi F, Breems DA, Knoebl P et al (2011) First results of the Phase II TITAN trial: anti-von Willebrand factor Nanobody®as adjunctive treatment for patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 9(Suppl 2):SY-TH-027Google Scholar
  45. Ray KK, Morrow DA, Gibson GM et al (2005) Predictors of the rise in VWF after ST elevation myocardial infarction: implications for treatment strategies and clinical outcome: an ENTIRE-TIMI 23 substudy. Eur Heart J 26:440–446PubMedCrossRefGoogle Scholar
  46. Remuzzi G, Galbusera M, Noris M et al (2002) Von Willebrand cleaving protease (ADAMTS13) is deficient in recurrent and familial thrombotic thrombocytopenic purpura and haemolytic uremic syndrome. Blood 100:778–785PubMedCrossRefGoogle Scholar
  47. Rivera J, Lozano ML, Navarro-Núñez L, Vicente V (2009) Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94:700–711PubMedCrossRefGoogle Scholar
  48. Ruggeri ZM (2003) Von Willebrand factor: a matrix protein that tries to be soluble. Blood 101:2450CrossRefGoogle Scholar
  49. Ruggeri ZM, Mannucci PM, Lombardi R et al (1982) Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes. Blood 59:1272–1278PubMedGoogle Scholar
  50. Ruggeri ZM, De Marco L, Gatti L et al (1983) Platelets have more than one binding site for von Willebrand factor. J Clin Invest 72:1–12PubMedCrossRefGoogle Scholar
  51. Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424PubMedCrossRefGoogle Scholar
  52. Sadler JE, Mannucci PM, Berntorp E, et al. (2000) Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost 84:160–174PubMedGoogle Scholar
  53. Sadler JE, Budde U, Eikelboom JC et al (2006) Update on the pathophysiology and classification of von Willebrand disease: a report of the subcommittee on von Willebrand factor. J Thromb Haemost 4:2103–2114PubMedCrossRefGoogle Scholar
  54. Savage B, Shattil SJ, Ruggeri ZM (1992) Modulation of platelet function through adhesion receptors. A dual role for glycoprotein IIb-IIIa (integrin alpha IIb beta 3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J Biol Chem 267:11300–11306PubMedGoogle Scholar
  55. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297PubMedCrossRefGoogle Scholar
  56. Savoia A, Pastore A, De Rocco D, et al. (2011) Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations. Haematologica 96:417–423PubMedCrossRefGoogle Scholar
  57. Schneider SW, Nuschele S, Wixforth A et al (2007) Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA 104:7899–7903PubMedCrossRefGoogle Scholar
  58. Siller-Matula JM, Mehri Y, Tanguay JF et al (2011) ARC15105 a potent antagonist of von Willebrand factor (VWF) platelet activation and adhesion. J Thromb Haemost 9(Suppl 2):O-MO-027Google Scholar
  59. Sixma JJ, Schiphorst ME, Verweij CL et al (1991) Effect of deletion of the A1 domain of von Willebrand factor on its binding to heparin, collagen and platelets in the presence of ristocetin. Eur J Biochem 196:369–375PubMedCrossRefGoogle Scholar
  60. Sonoda A, Murata M, Ikeda Y, Fukuchi Y, Watanabe K (2001) Stroke and platelet glycoprotein Ib alpha polymorphisms. Thromb Haemost 85:573–574PubMedGoogle Scholar
  61. Spiel AO, Gilbert JC, Jilma B (2008) von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation 117:1449–1459PubMedCrossRefGoogle Scholar
  62. Spiel AO, Mayr FB, Ladani N et al (2009) The aptamer ARC1779 is a potent and specific inhibitor of von Willebrand factor mediated ex vivo platelet function in acute myocardial infarction. Platelets 20:334–340PubMedCrossRefGoogle Scholar
  63. Staelens S, Hadders MA, Vauterin S, Platteau C et al (2006) Paratope determination of the antithrombotic antibody 82D6A3 based on the crystal structure of its complex with the von Willebrand factor A3-domain. J Biol Chem 281:2225–2231PubMedCrossRefGoogle Scholar
  64. Takahashi M, Yamashita A, Moriguchi-Goto S, et al. (2009) Critical role of von Willebrand factor and platelet interaction in venous thromboembolism. Histol Histopathol 24:1391–1398PubMedGoogle Scholar
  65. Thompson SG, Kienast J, Pyke SD et al (1995) Hemostatic factors and risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 332:635–641PubMedCrossRefGoogle Scholar
  66. Tsai HM (2010) Pathophysiology of thrombotic thrombocytopenic purpura. Int J Hematol 91:1–19PubMedCrossRefGoogle Scholar
  67. Uff S, Clemeston JM, Harrison T et al (2002) Crystal structure of the platelet glycoprotein Ibα N-terminal domain reveals an unmasking mechanism for receptor activation. J Biol Chem 38:35657–35663CrossRefGoogle Scholar
  68. Ulrichts H, Silence K, Schoolmester A et al (2011) Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared to currently marketed antiplatelet drugs. Blood 118:757–765PubMedCrossRefGoogle Scholar
  69. Van Bockenstaele F, Holz JB, Revets H (2009) The development of nanobodies for therapeutic applications. Curr Opin Invest Drugs 10:1212–1224Google Scholar
  70. Van Loon JE, de Jaegere PPT, Ulrichts H et al (2011) The in vivo effect of the new antithrombotic drug candidate ALX-0081 on blood samples of patients undergoing percutaneous coronary intervention. Thromb Haemost 106:165–171PubMedCrossRefGoogle Scholar
  71. Vanhoorelbeke K, Depraetere H, Romijn RA et al (2003) A consensus tetrapeptide selected by phage display adopts the conformation of a dominant discontinuous epitope of a monoclonal anti-VWF antibody that inhibits the von Willebrand factor-collagen interaction. J Biol Chem 278:37815–37821PubMedCrossRefGoogle Scholar
  72. Wadanoli M, Sako D, Shaw GD et al (2007) The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thromb Haemost 98:397–405PubMedGoogle Scholar
  73. Wagner DD (1989) Storage and secretion of von Willebrand factor. In: Zimmerman TS, Ruggeri ZM (eds) Coagulation and bleeding disorders. The role of factor VIII and von Willebrand factor. Dekker, New York, pp 161–180Google Scholar
  74. Wagner DD (1990) Cell biology of von Willebrand factor. Annu Rev Cell Biol 6:217–246PubMedCrossRefGoogle Scholar
  75. Wagner DD, Marder VJ (1984) Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol 99:2123–2130PubMedCrossRefGoogle Scholar
  76. Ware J, Russell S, Ruggeri ZM (2000) Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci USA 97:2803–2808PubMedCrossRefGoogle Scholar
  77. Wu D, Vanhoorelbeke K, Cauwenberghs N et al (2002a) Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 99:3623–3628PubMedCrossRefGoogle Scholar
  78. Wu D, Meiring M, Kotze HF et al (2002b) Inhibition of platelet glycoprotein Ib, glycoprotein IIb/IIIa, or both by monoclonal antibodies prevents arterial thrombosis in baboons. Arterioscler Thromb Vasc Biol 22:323–328PubMedCrossRefGoogle Scholar
  79. Yamashita A, Asasda Y, Sugimura H et al (2003) Contribution of von Willebrand factor to thrombus formation on neointima of rabbits stenotic iliac artery under high blood-flow velocity. Arterioscler Thromb Vasc Biol 23:1105–1110PubMedCrossRefGoogle Scholar
  80. Yamashita A, Furukoji E, Marutsuka K et al (2004) Increased vascular wall thrombogenicity combined with reduced blood flow promotes occlusive thrombus formation in rabbit femoral artery. Arterioscler Thromb Vasc Biol 24:2420–2424PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Division of Internal and Cardiovascular Medicine, Department of Internal MedicineUniversity of PerugiaPerugiaItaly
  2. 2.Department of Internal Medicine, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
  3. 3.Division of Internal Medicine, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly

Personalised recommendations