Some Reflections on Two Current Trends in Formal Argumentation

  • Henry Prakken
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7360)

Abstract

This paper discusses two recent developments in the formal study of argumentation-based inference: work on preference-based abstract argumentation and on classical (deductive) argumentation. It is first argued that general models of the use of preferences in argumentation cannot leave the structure of arguments and the nature of attack and defeat unspecified. Then it is claimed that classical argumentation cannot model some common forms of defeasible reasoning in a natural way. In both cases it will be argued that the recently proposed ASPIC  +  framework for structured argumentation does not suffer from these limitations. In the final part of the paper the work of Marek Sergot on argumentation-based inference will be discussed in light of the preceding discussion.

Keywords

Inference Rule Deontic Logic Argumentation Framework Nonmonotonic Reasoning Default Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Besnard, P.: Bridging the Gap between Abstract Argumentation Systems and Logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 12–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Amgoud, L., Besnard, P.: A Formal Analysis of Logic-Based Argumentation Systems. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 42–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumentation. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 1–7 (1998)Google Scholar
  4. 4.
    Amgoud, L., Cayrol, C.: A model of reasoning based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34, 197–215 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Amgoud, L., Vesic, S.: Two Roles of Preferences in Argumentation Frameworks. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 86–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Artikis, A., Sergot, M.J., Pitt, J.: An executable specification of a formal argumentation protocol. Artificial Intelligence 171, 776–804 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Baker, A.B., Ginsberg, M.L.: A theorem prover for prioritized circumscription. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, pp. 463–467 (1989)Google Scholar
  8. 8.
    Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13, 429–448 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bench-Capon, T.J.M., Sergot, M.J.: Towards a rule-based representation of open texture in law. In: Walter, C. (ed.) Computing Power and Legal Language, pp. 39–60. Greenwood/Quorum Press, Westport (1988)Google Scholar
  10. 10.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artificial Intelligence 128, 203–235 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)Google Scholar
  12. 12.
    Bex, F.J.: Evidence for a Good Story. A Hybrid Theory of Arguments, Stories and Criminal Evidence. Doctoral dissertation Faculty of Law, University of Groningen (2009)Google Scholar
  13. 13.
    Bex, F.J., Prakken, H., Reed, C., Walton, D.N.: Towards a formal account of reasoning about evidence: argumentation schemes and generalisations. Artificial Intelligence and Law 12, 125–165 (2003)CrossRefGoogle Scholar
  14. 14.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bondarenko, A., Kowalski, R.A., Toni, F.: An assumption-based fromework for nonmonotonic reasoning. In: Proceedings of the 2nd International Workshop on Logic Programming and Non-monotonic Reasoning, pp. 171–189 (1993)Google Scholar
  16. 16.
    Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 1043–1048 (1989)Google Scholar
  17. 17.
    Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press, Cambridge (1991)MATHGoogle Scholar
  18. 18.
    Caminada, M.: On the Issue of Reinstatement in Argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Caminada, M.: On the issue of contraposition of defeasible rules. In: Besnard, P., Doutre, S., Hunter, A. (eds.) Proceedings of Computational Models of Argument, COMMA 2008, pp. 109–115. IOS Press, Amsterdam (2008)Google Scholar
  20. 20.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intelligence 171, 286–310 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Caminada, M., Wu, Y.: On the limitations of abstract argumentation. In: Proceedings of the 23rd Benelux Conference on Artificial Intelligence (BNAIC 2011), Gent, Belgium (2011)Google Scholar
  22. 22.
    Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based entailment. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1443–1448 (1995)Google Scholar
  23. 23.
    Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Tenth International Conference (KR 2006), pp. 112–122. AAAI Press (2006)Google Scholar
  24. 24.
    Dung, P.M.: An argumentation semantics for logic programming with explicit negation. In: Proceedings of the Tenth Logic Programming Conference, pp. 616–630. MIT Press, Cambridge (1993)Google Scholar
  25. 25.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n–person games. Artificial Intelligence 77, 321–357 (1995)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Berlin (2009)CrossRefGoogle Scholar
  27. 27.
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intelligence 171, 642–674 (2007)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Dunne, P.E., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artificial Intelligence 175, 457–486 (2011)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Garcia, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4, 95–138 (2004)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Ginsberg, M.L.: AI and nonmonotonic reasoning. In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 1–33. Clarendon Press, Oxford (1994)Google Scholar
  31. 31.
    Gordon, T.F.: The Pleadings Game: formalizing procedural justice. In: Proceedings of the Fourth International Conference on Artificial Intelligence and Law, pp. 10–19. ACM Press, New York (1993)CrossRefGoogle Scholar
  32. 32.
    Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical-logic arguments: postulates and properties. Artificial Intelligence 175, 1479–1497 (2011)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Hage, J.C.: A theory of legal reasoning and a logic to match. Artificial Intelligence and Law 4, 199–273 (1996)CrossRefGoogle Scholar
  34. 34.
    Hanks, S., McDermott, D.: Default reasoning, nonmonotonic logics and the frame problem. In: Proceedings of the 5th National Conference on Artificial Intelligence (AAAI 1986), pp. 328–333 (1986)Google Scholar
  35. 35.
    Horty, J.: Some direct theories of nonmonotonic inheritance. In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 111–187. Clarendon Press, Oxford (1994)Google Scholar
  36. 36.
    Horty, J., Thomason, R.H., Touretzky, D.S.: A skeptical theory of inheritance in nonmonotonic semantic networks. Artificial Intelligence 42, 311–348 (1990)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Hunter, A.: Reasoning about the appropriateness of proponents for arguments. In: Proceedings of the 23rd National Conference on Artificial Intelligence (AAAI 2008), pp. 89–94 (2008)Google Scholar
  38. 38.
    Israel, D.: What’s wrong with non-monotonic logic? In: Proceedings of the First National Conference on Artificial Intelligence (AAAI 1980), pp. 99–101 (1980)Google Scholar
  39. 39.
    Jakobovits, H.: On the Theory of Argumentation Frameworks. Doctoral dissertation Free University Brussels (2000)Google Scholar
  40. 40.
    Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. Journal of Logic and Computation 9, 215–261 (1999)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Jefferys, B., Kelley, L.A., Sergot, M.J., Fox, J., Sternberg, M.J.E.: Capturing expert knowledge with argumentation: a case study in bioinformatics. Bioinformatics 22, 924–933 (2006)CrossRefGoogle Scholar
  42. 42.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2, 719–770 (1992)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Lin, F., Shoham, Y.: Argument systems. A uniform basis for nonmonotonic reasoning. In: Principles of Knowledge Representation and Reasoning: Proceedings of the First International Conference, pp. 245–255. Morgan Kaufmann Publishers, San Mateo (1989)Google Scholar
  44. 44.
    Loui, R.P.: Defeat among arguments: a system of defeasible inference. Computational Intelligence 2, 100–106 (1987)CrossRefGoogle Scholar
  45. 45.
    Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial Intelligence 173, 901–934 (2009)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Modgil, S., Prakken, H.: Reasoning about preferences in structured extended argumentation frameworks. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of Computational Models of Argument, COMMA 2010, pp. 347–358. IOS Press, Amsterdam (2010)Google Scholar
  47. 47.
    Modgil, S., Prakken, H.: Revisiting preferences and argumentation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1021–1026 (2011)Google Scholar
  48. 48.
    Nute, D.: Defeasible logic. In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 253–395. Clarendon Press, Oxford (1994)Google Scholar
  49. 49.
    Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-agent dialogues. Journal of Logic and Computation 13, 347–376 (2003)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Pollock, J.L.: Defeasible reasoning. Cognitive Science 11, 481–518 (1987)CrossRefGoogle Scholar
  51. 51.
    Pollock, J.L.: Justification and defeat. Artificial Intelligence 67, 377–408 (1994)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Pollock, J.L.: Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press, Cambridge (1995)Google Scholar
  53. 53.
    Pollock, J.L.: A recursive semantics for defeasible reasoning. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 173–197. Springer, Berlin (2009)CrossRefGoogle Scholar
  54. 54.
    Poole, D.L.: A logical framework for default reasoning. Artificial Intelligence 36, 27–47 (1988)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Prakken, H.: An argumentation framework in default logic. Annals of Mathematics and Artificial Intelligence 9, 91–132 (1993)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Prakken, H.: Logical Tools for Modelling Legal Argument. Doctoral dissertation Free University Amsterdam (1993)Google Scholar
  57. 57.
    Prakken, H.: Formalising ordinary legal disputes: a case study. Artificial Intelligence and Law 16, 333–359 (2008)CrossRefGoogle Scholar
  58. 58.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Computation 1, 93–124 (2010)CrossRefGoogle Scholar
  59. 59.
    Prakken, H.: On the nature of argument schemes. In: Reed, C., Tindale, C. (eds.) Dialectics, Dialogue and Argumentation. An Examination of Douglas Walton’s Theories of Reasoning and Argument, pp. 167–185. College Publications, London (2010)Google Scholar
  60. 60.
    Prakken, H.: Reconstructing Popov v. Hayashi in a framework for argumentation with structured arguments and Dungean semantics. The Knowledge Engineering Review (2011) (to appear), http://www.cs.uu.nl/groups/IS/archive/henry/ker09.pdf
  61. 61.
    Prakken, H., Renooij, S.: Reconstructing causal reasoning about evidence: a case study. In: JURIX 2001: The Fourteenth Annual Conference on Legal Knowledge and Information Systems, pp. 131–142. IOS Press, Amsterdam (2001)Google Scholar
  62. 62.
    Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-classical Logics 7, 25–75 (1997)MathSciNetMATHGoogle Scholar
  63. 63.
    Prakken, H., Sergot, M.J.S.: Contrary-to-duty imperatives, defeasibility and violability. In: Proceedings of the Second International Workshop on Deontic Logic in Computer Science, Oslo, Tano, pp. 296–318 (1994)Google Scholar
  64. 64.
    Prakken, H., Sergot, M.J.S.: Contrary-to-duty obligations. Studia Logica 57, 91–115 (1996)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Prakken, H., Sergot, M.J.S.: Dyadic deontic logic and contrary-to-duty obligations. In: Nute, D. (ed.) Defeasible Deontic Logic. Synthese Library, vol. 263, pp. 223–262. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  66. 66.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Rescher, N.: Plausible Reasoning. Van Gorcum, Assen (1976)Google Scholar
  68. 68.
    Rescher, N.: Dialectics: a Controversy-oriented Approach to the Theory of Knowledge. State University of New York Press, Albany (1977)Google Scholar
  69. 69.
    Sartor, G.: Legal Reasoning: a Cognitive Approach to the Law. Springer, Berlin (2005)Google Scholar
  70. 70.
    Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible argumentation and its implementation. Artificial Intelligence 53, 125–157 (1992)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Sombekke, J., van Engers, T.M., Prakken, H.: Argumentation structures in legal dossiers. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Law, pp. 277–281. ACM Press, New York (2007)Google Scholar
  72. 72.
    Toni, F., Sergot, M.J.: Argumentation and Answer Set Programming. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 164–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  73. 73.
    Verheij, B.: An integrated view on rules and principles. In: van Kralingen, R.W., et al. (eds.) Legal Knowledge Based Systems. Foundations of Legal Knowledge Systems Proceedings of (JURIX 1996), pp. 25–38. Tilburg University Press, Tilburg (1996)Google Scholar
  74. 74.
    Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Proceedings of the Eighth Dutch Conference on Artificial Intelligence (NAIC 1996), Utrecht, The Netherlands, pp. 357–368 (1996)Google Scholar
  75. 75.
    Verheij, B.: Dialectical argumentation with argumentation schemes: an approach to legal logic. Artificial Intelligence and Law 11, 167–195 (2003)CrossRefGoogle Scholar
  76. 76.
    Vreeswijk, G.A.W.: Studies in Defeasible Argumentation. Doctoral dissertation Free University Amsterdam (1993)Google Scholar
  77. 77.
    Vreeswijk, G.A.W.: Abstract argumentation systems. Artificial Intelligence 90, 225–279 (1997)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Henry Prakken
    • 1
    • 2
  1. 1.Department of Information and Computing SciencesUtrecht UniversityThe Netherlands
  2. 2.Faculty of LawUniversity of GroningenThe Netherlands

Personalised recommendations