Abstract

Depending on the sound source and the application conditions, silencers and encapsulations have to be adjusted to always different, under circumstances even narrowband noise spectra, and often are exposed to extreme mechanical, chemical and thermal loads. Every new application presents a challenge and demands innovative solutions, be it to minimize pressure losses (in ventilation systems) or to prevent overheating (of engines). In some cases, the soiling problem alone still prevents implementing suited noise control measures in ducts and machines, whereas occasionally exaggerated measures are encountered under normal conditions, especially with regard to the high frequencies. Considering that especially abrasion and soiling of fibrous or porous damping materials create severe problems, alternative, fiberless absorber technology is urgently needed (Fuchs 2001, 2002).

Keywords

Sound Source Insertion Loss Glass Foam Sound Absorber Helmholtz Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Brandstätt P, Bay K, Fischer G (2004) Noise reduction at heating system exhaust pipes. In: Proceedings—CFA/DAGA 2004, Strasbourg, pp 875–876Google Scholar
  2. Eckoldt D, Rambausek N, Brandstätt N, Hemsing J (1998) Nutzung von Schornsteinen als Breitband-Schalldämpfer. Bauphysik 20(6):191–194Google Scholar
  3. Eckoldt D, Krämer MM, Hemsing J (2004) Silencers for exhaust gas stacks of a power station. In: Proceedings—CFA/DAGA 2004, Strasbourg, pp 457–458Google Scholar
  4. Fücker P (1979) Reflexionsschalldämpfung mittels Reihenresonator. In: Schirmer W (ed) Lärmbekämpfung, Chap. 13. Tribüne, BerlinGoogle Scholar
  5. Fuchs HV (1983, 1993) Generation and control of noise in water supply installations. Part 1: Fundamental aspects. Appl Acoust 16:325–346; Part 2: Sound source mechanisms. Appl Acoust 38:59–85; Part 3: Rating and abating procedures. Appl Acoust 39:165–190Google Scholar
  6. Fuchs HV (2001) Alternative fibreless absorbers—new tools and materials for noise control and acoustic comfort. Acustica 87(3):414–422Google Scholar
  7. Fuchs HV (2002) Innovative sound absorption products—new tools and materials for noise control and acoustic comfort. In: Pandalalai (ed) Recent research developments—sound & vibration, Part 1, pp 203–239. Transworld Research Network, KeralaGoogle Scholar
  8. Fuchs HV, Voigtsberger CA (1980) Schalldämpfer in Wasserleitungen. Z Wärmeschutz Kälteschutz Schallschutz Brandschutz Special issue:46–80Google Scholar
  9. Fuchs HV, Ackermann U, Rambausek N (1989a) Nichtporöser Schallabsorber für den Einsatz in Rauchgasreinigungsanlagen. VGB Kraftwerkstech 69(11):1102–1110Google Scholar
  10. Fuchs HV, Ackermann U, Rambausek N (1989b) Non-porous sound absorbers for use in flue gas cleaning plants. VGB Power Technol 69(11):965–972Google Scholar
  11. Fuchs HV, Eckoldt D, Hemsing J (1999a) Alternative Schallabsorber für den industriellen Einsatz: Akustiker suchen nach faserfreien Schalldämpfern. VGB Kraftwerkstech 79(3):76–78Google Scholar
  12. Fuchs HV, Eckoldt D, Hemsing J (1999b) Alternative sound absorbers for industrial use: acousticians on the quest for alternative attenuators. VGB Power Technol 79(3):58–60Google Scholar
  13. Galaitsis AG, Vér IL (1992) Passive silencers and lined ducts. In: Beranek LL, Vér IL (eds) Noise and vibration control engineering, Chap. 10. Wiley, New YorkGoogle Scholar
  14. Gösele K (1959) Über die Dimensionierung von Schalldämpfern nach dem Reflexionsprinzip. Hochfrequenztech Elektroakust 68(1):15–21Google Scholar
  15. Kurtze G, Schmidt H, Westphal W (1975) Physik und Technik der Lärmbekämpfung. G. Braun, KarlsruheGoogle Scholar
  16. Möser M (2004) Engineering acoustics. Springer, BerlinGoogle Scholar
  17. Möser M (2007) Technische Akustik. Springer, BerlinGoogle Scholar
  18. Munjal M (1987) Acoustics of ducts and mufflers. Wiley, New YorkGoogle Scholar
  19. Teige K, Brandstätt P, Frommhold W (1996) Zur akustischen Anregung kleiner Räume durch Luftauslässe. Z Lärmbekämpf 43(3):74–83Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations