The IUPR Dataset of Camera-Captured Document Images

  • Syed Saqib Bukhari
  • Faisal Shafait
  • Thomas M. Breuel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7139)

Abstract

Major challenges in camera-base document analysis are dealing with uneven shadows, high degree of curl and perspective distortions. In CBDAR 2007, we introduced the first dataset (DFKI-I) of camera-captured document images in conjunction with a page dewarping contest. One of the main limitations of this dataset is that it contains images only from technical books with simple layouts and moderate curl/skew. Moreover, it does not contain information about camera’s specifications and settings, imaging environment, and document contents. This kind of information would be more helpful for understanding the results of the experimental evaluation of camera-based document image processing (binarization, page segmentation, dewarping, etc.). In this paper, we introduce a new dataset (the IUPR dataset) of camera-captured document images. As compared to the previous dataset, the new dataset contains images from different varieties of technical and non-technical books with more challenging problems, like different types of layouts, large variety of curl, wide range of perspective distortions, and high to low resolutions. Additionally, the document images in the new dataset are provided with detailed information about thickness of books, imaging environment and camera’s viewing angle and its internal settings. The new dataset will help research community to develop robust camera-captured document processing algorithms in order to solve the challenging problems in the dataset and to compare different methods on a common ground.

Keywords

Dataset Camera-Captured Document Processing Performance Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Breuel, T.: The future of document imaging in the era of electronic documents. In: Int. Workshop on Document Analysis, Kolkata, India (March 2005)Google Scholar
  5. 5.
    Bukhari, S.S., Shafait, F., Breuel, T.M.: Adaptive binarization of unconstrained hand-held camera-captured document images. Journal of Universal Computer Science (J.UCS) 15(18), 3343–3363 (2009)Google Scholar
  6. 6.
    Bukhari, S.S., Shafait, F., Breuel, T.M.: Dewarping of document images using coupled-snakes. In: Proceedings of Third International Workshop on Camera-Based Document Analysis and Recognition, Barcelona, Spain, pp. 34–41 (2009)Google Scholar
  7. 7.
    Bukhari, S.S., Shafait, F., Breuel, T.M.: Performance evaluation of curled textlines segmentation algorithms on CBDAR 2007 dewarping contest dataset. In: Proceedings 17th International Conference on Image Processing, Hong Kong, China (2010)Google Scholar
  8. 8.
    Bukhari, S.S., Shafait, F., Breuel, T.M.: Border noise removal of camera-captured document images using page frame detection. In: Proceedings of Fourth International Workshop on Camera-Based Document Analysis and Recognition, Beijing, China (2011)Google Scholar
  9. 9.
    Ford, G., Thoma, G.R.: Ground truth data for document image analysis. In: Symposium on Document Image Understanding and Technology, Greenbelt, MD, USA, pp. 199–205 (April 2003)Google Scholar
  10. 10.
    Guyon, I., Haralick, R.M., Hull, J.J., Phillips, I.T.: Data sets for OCR and document image understanding research. In: Bunke, H., Wang, P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 779–799. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  11. 11.
    Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a survey. Int. Jour. of Document Analysis and Recognition 7(2-3), 84–104 (2005)CrossRefGoogle Scholar
  12. 12.
    Marti, U., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. Jour. on Document Analysis and Recognition 5(1), 39–46 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Oliveira, D.M., Lins, R.D.: A new method for shading removal and binarization of documents acquired with portable digital cameras. In: Proceedings of Third International Workshop on Camera-Based Document Analysis and Recognition, Barcelona, Spain, pp. 3–10 (2009)Google Scholar
  14. 14.
    Pechwitz, M., Maddouri, S.S., Maergner, V., Ellouze, N., Amiri, H.: IFN/ENIT-database of handwritten Arabic words. In: 7th Colloque Int. Francophone sur l’Ecrit et le Document, Hammamet, Tunis (October 2002)Google Scholar
  15. 15.
    Rice, S.V., Jenkins, F.R., Nartker, T.A.: The fourth annual test of OCR accuracy. Tech. rep., Information Science Research Institute, University of Nevada, Las Vegas (1995)Google Scholar
  16. 16.
    Shafait, F., van Beusekom, J., Keysers, D., Breuel, T.M.: Document cleanup using page frame detection. Int. Jour. on Document Analysis and Recognition 11(2), 81–96 (2008)CrossRefGoogle Scholar
  17. 17.
    Shafait, F., Breuel, T.M.: Document image dewarping contest. In: 2nd Int. Workshop on Camera-Based Document Analysis and Recognition, Curitiba, Brazil, pp. 181–188 (September 2007)Google Scholar
  18. 18.
    Shafait, F., Keysers, D., Breuel, T.M.: Performance evaluation and benchmarking of six page segmentation algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(6), 941–954 (2008)CrossRefGoogle Scholar
  19. 19.
    Taylor, M.J., Zappala, A., Newman, W.M., Dance, C.R.: Documents through cameras. Image and Vision Computing 17(11), 831–844 (1999)CrossRefGoogle Scholar
  20. 20.
    Todoran, L., Worring, M., Smeulders, M.: The UvA color document dataset. Int. Jour. on Document Analysis and Recognition 7(4), 228–240 (2005)CrossRefGoogle Scholar
  21. 21.
    Ulges, A., Lampert, C., Breuel, T.: Document image dewarping using robust estimation of curled text lines. In: Proc. Eighth Int. Conf. on Document Analysis and Recognition, pp. 1001–1005 (August 2005)Google Scholar
  22. 22.
    Vincent, L.: Google book search: Document understanding on a massive scale. In: 9th Int. Conf. on Document Analysis and Recognition, Curitiba, Brazil, pp. 819–823 (September 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Syed Saqib Bukhari
    • 1
  • Faisal Shafait
    • 2
  • Thomas M. Breuel
    • 1
  1. 1.Technical University of KaiserslauternGermany
  2. 2.German Research Center for Artificial Intelligence (DFKI)KaiserslauternGermany

Personalised recommendations