Integrating Healthcare-Related Information Using the Entity-Attribute-Value Storage Model

  • Dortje Löper
  • Meike Klettke
  • Ilvio Bruder
  • Andreas Heuer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7231)


For an optimal care of patients in home healthcare, it is essential to exchange healthcare-related information with other stakeholders. Unfortunately, paper-based documentation procedures as well as the heterogeneity between information systems inhibit a well-regulated communication. Therefore, a digital patient care record is introduced to establish the foundation for integrating healthcare-related information. To overcome the heterogeneity, standards for health information exchange such as HL7 CDA are used. This paper proposes a generic storage structure based on the entity-attribute-value (EAV) model for the patient care record. This approach offers flexibility concerning different standard types and the evolution in healthcare knowledge and processes. It also allows for highly sparsed data to be stored in a compact way.

The underlying database structure is presented, the import process for extracting incoming reports is described and the export process for generating new outgoing standardized reports is briefly illustrated. First performance tests regarding the query response time are also given.


Care Giver Health Information Exchange Healthcare Information Storage Structure Target Format 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bortis, G.: Experiences with Mirth: An Open Source Health Care Integration Engine. In: ICSE 2008, pp. 649–652. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Chen, R.S., Nadkarni, P., Marenco, L., Levin, F., Erdos, J., Miller, P.L.: Exploring Performance Issues for a Clinical Database Organized Using an Entity-Attribute-Value Representation. JAMIA 7(5), 475–487 (2000)Google Scholar
  3. 3.
    Corwin, J., Silberschatz, A., Miller, P.L., Marenco, L.: Dynamic Tables: An Architecture for Managing Evolving, Heterogeneous Biomedical Data in Relational Database Management Systems. JAMIA 14(1), 86–93 (2007)Google Scholar
  4. 4.
    Dinu, V., Nadkarni, P., Brandt, C.: Pivoting approaches for bulk extraction of Entity-Attribute-Value data. Computer Methods and Programs in Biomedicine 82(1), 38–43 (2006)CrossRefGoogle Scholar
  5. 5.
    Flemming, D., Hübner, U., Heitmann, K.U., Oemig, F., Thun, S.: Implementierungsleitfaden ”ePflegebericht” auf Basis der HL7 Clinical Document Architecture Release 2 (2010)Google Scholar
  6. 6.
    Friedman, C., Hripcsak, G., Johnson, S.B., Cimino, J.J., Clayton, P.D.: A Generalized Relational Schema for an Integrated Clinical Patient Database. In: Proc. Annu. Symp. Comput. Appl. Med. Care, pp. 335–339 (1990)Google Scholar
  7. 7.
    Heitmann, K.U., Kassner, A., Gehlen, E., Görke, H.-J., Heidenreich, G.: VHitG Arztbrief - Auf Basis der HL7 Clinical Document Architecture Release 2 (2006)Google Scholar
  8. 8.
    Hellesø, R., Lorensen, M., Sorensen, L.: Challenging the information gap - the patients transfer from hospital to home health care. I. J. of Medical Informatics 73(7-8), 569–580 (2004)CrossRefGoogle Scholar
  9. 9.
    Hägglund, M., Scandurra, I., Moström, D., Koch, S.: Integration Architecture of a Mobile Virtual Health Record for Shared Home Care. In: Proceedings of MIE 2005, vol. 116, pp. 340–345 (2005)Google Scholar
  10. 10.
    ISO. EN ISO 21090 Health Informatics - Harmonized data types for information interchange. Technical report, ISO/CEN (2011)Google Scholar
  11. 11.
    Lenz, R., Beyer, M., Kuhn, K.A.: Semantic integration in healthcare networks. I. J. of Medical Informatics 76(2-3), 201–207 (2007)CrossRefGoogle Scholar
  12. 12.
    Lenz, R., Beyer, M., Meiler, C., Jablonski, S., Kuhn, K.A.: Informationsintegration in Gesundheitsversorgungsnetzen. Informatik-Spektrum 28, 105–119 (2005), doi:10.1007/s00287-005-0467-4CrossRefGoogle Scholar
  13. 13.
    Nadkarni, P.M., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., Miller, P.: Organization of Heterogeneous Scientific Data Using the EAV/CR Representation. JAMIA 6(6), 478–493 (1999)Google Scholar
  14. 14.
    Neumann, C.P., Lenz, R.: αFlow: A Document-Based Approach to Inter-institutional Process Support in Healthcare. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 569–580. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Sunyaev, A., Schweiger, A., Leimeister, J.M., Krcmar, H.: Software-Agenten zur Integration von Informationssystemen im Gesundheitswesen. In: Multikonferenz Wirtschaftsinformatik (2008)Google Scholar
  16. 16.
    Umblia, T., Hein, A., Bruder, I., Karopka, T.: MARIKA: A Mobile Assistance System for Supporting Home Care. In: MobiHealthInf (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dortje Löper
    • 1
  • Meike Klettke
    • 1
  • Ilvio Bruder
    • 1
  • Andreas Heuer
    • 1
  1. 1.Database Research GroupUniversity of RostockRostockGermany

Personalised recommendations