Evolutionary and Meta-evolutionary Approach for the Optimization of Chaos Control

  • Roman Senkerik
  • Zuzana Oplatkova
  • Donald Davendra
  • Ivan Zelinka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7269)

Abstract

This paper deals with the optimization of control of Hénon Map, which is a discrete chaotic system. This paper introduces and compares evolutionary approach representing tuning of parameters for an existing control method, as well as meta-evolutionary approach representing synthesis of whole control law by means of Analytic Programming (AP). These two approaches are used for the purpose of stabilization of the stable state and higher periodic orbits, which stand for oscillations between several values of chaotic system. For experimentation, Self-Organizing Migrating Algorithm (SOMA) and Differential Evolution (DE) were used.

Keywords

Particle Swarm Optimization Chaotic System Evolutionary Approach Chaos Control Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Evolutionary Design of Chaos Control in 1D. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 165–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z.: Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Computers & Mathematics with Applications 60, 1026–1037 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos, Solitons & Fractals 40, 111–129 (2009)MATHCrossRefGoogle Scholar
  4. 4.
    Pyragas, K.: Control of chaos via extended delay feedback. Physics Letters A 206, 323–330 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Physics Letters A 170, 421–428 (1992)CrossRefGoogle Scholar
  6. 6.
    Just, W.: Principles of Time Delayed Feedback Control. In: Schuster, H.G. (ed.) Handbook of Chaos Control. Wiley-Vch (1999)Google Scholar
  7. 7.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: Analytic programming. Mathematical and Computer Modelling (2011), doi:10.1016/j.mcm.2011.05.030Google Scholar
  8. 8.
    Zelinka, I., Oplatkova, Z., Nolle, L.: Boolean Symmetry Function Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative Study. International Journal of Simulation Systems, Science and Technology 6, 44–56 (2005)Google Scholar
  9. 9.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, ch. 7, p. 33. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Zelinka I.: SOMA homepage, http://www.fai.utb.cz/people/zelinka/soma/ (accessed September 22, 2011)
  11. 11.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Price K, Storn R.: Differential evolution homepage, http://www.icsi.berkeley.edu/~storn/code.html (accessed September 22, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roman Senkerik
    • 1
  • Zuzana Oplatkova
    • 1
  • Donald Davendra
    • 2
  • Ivan Zelinka
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata UniversityZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations