Advertisement

Population Reduction Differential Evolution with Multiple Mutation Strategies in Real World Industry Challenges

  • Aleš Zamuda
  • Janez Brest
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7269)

Abstract

This paper presents a novel differential evolution algorithm for optimization of state-of-the-art real world industry challenges. The algorithm includes the self-adaptive jDE algorithm with one of its strongest extensions, population reduction, and is now combined with multiple mutation strategies. The two mutation strategies used are run dependent on the population size, which is reduced with growing function evaluation number. The problems optimized reflect several of the challenges in current industry problems tackled by optimization algorithms nowadays. We present results on all of the 22 problems included in the Problem Definitions for a competition on Congress on Evolutionary Computation (CEC) 2011. Performance of the proposed algorithm is compared to two algorithms from the competition, where the average final best results obtained for each test problem on three different number of total function evaluations allowed are compared.

Keywords

self-adaptive differential evolution population reduction multiple mutation strategies real world industry challenges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  2. 2.
    Brest, J., Korošec, P., Šilc, J., Zamuda, A., Bošković, B., Maučec, M.S.: Differential evolution and differential ant-stigmergy on dynamic optimisation problems. International Journal of Systems Science (2012), doi:10.1080/00207721.2011.617899Google Scholar
  3. 3.
    Brest, J., Maučec, M.S.: Population Size Reduction for the Differential Evolution Algorithm. Applied Intelligence 29(3), 228–247 (2008)CrossRefGoogle Scholar
  4. 4.
    Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential Evolution Using a Neighborhood-based Mutation Operator. IEEE Transactions on Evolutionary Computation 13(3), 526–553 (2009)CrossRefGoogle Scholar
  5. 5.
    Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)CrossRefGoogle Scholar
  6. 6.
    Das, S., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Real World Optimization Problems. Tech. rep. Dept. of Electronics and Telecommunication Engg., Jadavpur University, India and School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (2011)Google Scholar
  7. 7.
    Feoktistov, V.: Differential Evolution: In Search of Solutions Springer Optimization and Its Applications. Springer-Verlag New York, Inc., Secaucus (2006)zbMATHGoogle Scholar
  8. 8.
    Korošec, P., Šilc, J., Filipič, B.: The differential ant-stigmergy algorithm. Information Sciences (2012), doi:10.1016/j.ins.2010.05.002Google Scholar
  9. 9.
    Korošec, P., Šilc, J.: The continuous differential ant-stigmergy algorithm applied to bound constrained real-world optimization problem. In: The 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orelans, USA, June 5-8, pp. 1327–1334 (2011)Google Scholar
  10. 10.
    Mallipeddi, R., Suganthan, P.N.: Ensemble Differential Evolution Algorithm for CEC2011 Problems. In: The 2011 IEEE Congress on Evolutionary Computation (CEC 2011), p. 68. IEEE Press (2011)Google Scholar
  11. 11.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  12. 12.
    Mezura-Montes, E., Lopez-Ramirez, B.C.: Comparing bio-inspired algorithms in constrained optimization problems. In: The 2007 IEEE Congress on Evolutionary Computation, September 25-28, pp. 662–669 (2007)Google Scholar
  13. 13.
    Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact Differential Evolution. IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)CrossRefGoogle Scholar
  14. 14.
    Neri, F., Tirronen, V.: Recent Advances in Differential Evolution: A Survey and Experimental Analysis. Artificial Intelligence Review 33(1-2), 61–106 (2010)CrossRefGoogle Scholar
  15. 15.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing. Springer, Berlin (2005)zbMATHGoogle Scholar
  16. 16.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)CrossRefGoogle Scholar
  17. 17.
    Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tušar, T., Korošec, P., Papa, G., Filipič, B., Šilc, J.: A comparative study of stochastic optimization methods in electric motor design. Applied Intelligence 2(27), 101–111 (2007)Google Scholar
  19. 19.
    Tvrdík, J.: Adaptation in differential evolution: A numerical comparison. Applied Soft Computing 9(3), 1149–1155 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15(1), 55–66 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zaharie, D.: Influence of crossover on the behavior of Differential Evolution Algorithms. Applied Soft Computing 9(3), 1126–1138 (2009)CrossRefGoogle Scholar
  22. 22.
    Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Large Scale Global Optimization Using Differential Evolution with Self Adaptation and Cooperative Co-evolution. In: 2008 IEEE World Congress on Computational Intelligence, pp. 3719–3726. IEEE Press (2008)Google Scholar
  23. 23.
    Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization. In: IEEE Congress on Evolutionary Computation 2009, pp. 195–202. IEEE Press (2009)Google Scholar
  24. 24.
    Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Differential Evolution for Parameterized Procedural Woody Plant Models Reconstruction. Applied Soft Computing 11, 4904–4912 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. Trans. Evol. Comp. 13(5), 945–958 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aleš Zamuda
    • 1
  • Janez Brest
    • 1
  1. 1.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia

Personalised recommendations