Enriching Business Processes with Rules Using the Oryx BPMN Editor

  • Krzysztof Kluza
  • Krzysztof Kaczor
  • Grzegorz J. Nalepa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7268)


BPMN is a leading visual notation for modeling Business Processes. Although it can be efficiently used for modeling workflow structures, it is not suitable for modeling the low-level logic of particular tasks in the process. Recently, Business Rules have been used for this purpose. Such rules are often specified in natural language and in an informal way. In this paper, we consider an approach to the integration of Business Processes with Business Rules. As a proof of concept, we propose a framework based on the Oryx BPMN editor integrated with rule-based tools. The goal of the integration of the BPMN editor with the XTT2 rule framework is to provide an environment for visual modeling processes with formally described business rules. We also discuss execution options of the integrated model. In the future, this opens up a possibility to execute such models using the HeaRT rule engine.


Business Process Decision Table Business Rule Rule Modeling Business Process Execution Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OMG: Business Process Model and Notation (BPMN): Version 2.0 specification. Technical Report formal/2011-01-03, Object Management Group (January 2011)Google Scholar
  2. 2.
    Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley Professional (2003)Google Scholar
  3. 3.
    Giurca, A., Gasevic, D., Taveter, K. (eds.): Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches. Information Science Reference, Hershey, New York (2009)Google Scholar
  4. 4.
    Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2 method. International Journal on Artificial Intelligence Tools 20(6), 1107–1125 (2011)CrossRefGoogle Scholar
  5. 5.
    Nalepa, G.J.: Proposal of business process and rules modeling with the XTT method. In: Negru, V., et al. (eds.) Symbolic and Numeric Algorithms for Scientific Computing: SYNASC 2007: 9th international Symposium: RuleApps 2007 – Workshop on Rule-based Applications: Timisoara, Romania, September 26–29, pp. 500–506. IEEE, CPS Conference Publishing Service, Los Alamitos, California (2007)CrossRefGoogle Scholar
  6. 6.
    Tadeusiewicz, R.: Introduction to intelligent systems. In: Wilamowski, B.M., Irwin, J.D. (eds.) Intelligent Systems, 2nd edn. The Electrical Engineering Handbook Series. The Industrial Electronics Handbook, pp. 1–1–1–12. CRC Press Taylor & Francis Group, Boca Raton, London (2011)Google Scholar
  7. 7.
    OMG: Unified Modeling Language (OMG UML) version 2.2. superstructure. Technical Report formal/2009-02-02, Object Management Group (February 2009)Google Scholar
  8. 8.
    Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-based business rules. International Journal of Software Engineering and Knowledge Engineering, IJSEKE (2012) (accepted for publication)Google Scholar
  9. 9.
    Knolmayer, G., Endl, R., Pfahrer, M.: Modeling processes and workflows by business rules. In: Business Process Management, Models, Techniques, and Empirical Studies, pp. 16–29. Springer, London (2000)Google Scholar
  10. 10.
    Charfi, A., Mezini, M.: Hybrid web service composition: Business processes meet business rules. In: Proceedings of the 2nd International Conference on Service-Oriented Computing, ICSOC 2004, pp. 30–38. ACM, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Nalepa, G.J., Kluza, K., Ernst, S.: Modeling and analysis of business processes with business rules. In: Beckmann, J. (ed.) Business Process Modeling: Software Engineering, Analysis and Applications. Business Issues, Competition and Entrepreneurship. Nova Publishers (2011)Google Scholar
  12. 12.
    Kluza, K., Nalepa, G.J., Łysik, Ł.: Visual inference specification methods for modularized rulebases. Overview and integration proposal. In: Nalepa, G.J., Baumeister, J. (eds.) 6th Workshop on Knowledge Engineering and Software Engineering (KESE 2009) at the 32nd German Conference on Artificial Intelligence, Karlsruhe, Germany, Karlsruhe, Germany, September 21, pp. 6–17 (2010)Google Scholar
  13. 13.
    Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems. International Journal of Applied Mathematics and Computer Science 20(1), 35–53 (2010)CrossRefGoogle Scholar
  14. 14.
    Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach. Wydawnictwa AGH, Kraków (2011)Google Scholar
  15. 15.
    Nalepa, G.J.: Architecture of the HeaRT Hybrid Rule Engine. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 598–605. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Sarang, P., Juric, M., Mathew, B.: Business Process Execution Language for Web Services BPEL and BPEL4WS. Packt Publishing (2006)Google Scholar
  17. 17.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for Rule Inference in Modularized Rule Bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 305–312. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Nalepa, G.J., Ligęza, A., Kaczor, K.: Overview of Knowledge Formalization with XTT2 Rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 329–336. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: HalVA - Rule Analysis Framework for XTT2 Rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 337–344. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Zur Muehlen, M., Indulska, M., Kamp, G.: Business process and business rule modeling languages for compliance management: a representational analysis. In: Tutorials, Posters, Panels and Industrial Contributions at the 26th International Conference on Conceptual Modeling, ER 2007, vol. 83, pp. 127–132. Australian Computer Society, Inc., Darlinghurst (2007)Google Scholar
  21. 21.
    Zur Muehlen, M., Indulska, M., Kittel, K.: Towards integrated modeling of business processes and business rules. In: 19th Australasian Conference on Information Systems ACIS 2008, Christchurch, New Zealand (December 2008)Google Scholar
  22. 22.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  23. 23.
    Monsalve, C., Abran, A., April, A.: Measuring software functional size from business process models. International Journal of Software Engineering and Knowledge Engineering 21(3), 311–338 (2011)CrossRefGoogle Scholar
  24. 24.
    Lam, V.S.W.: Formal analysis of BPMN models: a NuSMV-based approach. International Journal of Software Engineering and Knowledge Engineering 20(7), 987–1023 (2010)CrossRefGoogle Scholar
  25. 25.
    Kaczor, K., Nalepa, G.J., Łysik, Ł., Kluza, K.: Visual Design of Drools Rule Bases Using the XTT2 Method. In: Katarzyniak, R., Chiu, T.-F., Hong, C.-F., Nguyen, N.T. (eds.) Semantic Methods for Knowledge Management and Communication. SCI, vol. 381, pp. 57–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A.: Proposal of Representing BPMN Diagrams with XTT2-Based Business Rules. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 243–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Szpyrka, M., Nalepa, G.J., Ligęza, A., Kluza, K.: Proposal of Formal Verification of Selected BPMN Models with Alvis Modeling Language. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 249–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – Modelling Language for Concurrent Systems. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 315–341. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krzysztof Kluza
    • 1
  • Krzysztof Kaczor
    • 1
  • Grzegorz J. Nalepa
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations