ORG - Oblique Rules Generator

  • Marcin Michalak
  • Marek Sikora
  • Patryk Ziarnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7268)

Abstract

In this paper the new approach to generating oblique decision rules is presented. On the basis of limitations for every oblique decision rules parameters the grid of parameters values is created and then for every node of this grid the oblique condition is generated and its quality is calculated. The best oblique conditions build the oblique decision rule. Conditions are added as long as there are non-covered objects and the limitation of the length of the rule is not exceeded. All rules are generated with the idea of sequential covering.

Keywords

machine learning decision rules oblique decision rules rules induction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, A., Cercone, N.: Rule quality measures for rule induction systems - description and evaluation. Computational Intelligence 17, 409–424 (2001)CrossRefGoogle Scholar
  2. 2.
    Bazan, J., Szczuka, M., Wróblewski, J.: A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bennett, K.P., Blue, J.A.: A support vector machine approach to decision trees. In: Proceedings of the IJCNN 1998, pp. 2396–2401 (1997)Google Scholar
  4. 4.
    Bloedorn, E., Michalski, R.S.: Data-Driven Constructive Induction. IEEE Intelli. Syst. 13(2), 30–37 (1998)CrossRefGoogle Scholar
  5. 5.
    Cantu-Paz, E., Kamath, C.: Using evolutionary algorithms to induce oblique decision trees. In: Proc. of Genet. and Evol. Comput. Conf., pp. 1053–1060 (2000)Google Scholar
  6. 6.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml
  7. 7.
    Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimization. In: Proc. of the 15th Int. Conf. on Mach. Learn., pp. 144–151 (1998)Google Scholar
  8. 8.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multi-criteria decision analysis. Eur. J. of Oper. Res. 129(1), 1–47 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Kim, H., Loh, W.-Y.: Classification trees with bivariate linear discriminant node models. J. of Comput. and Graph. Stat. 12, 512–530 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Latkowski, R., Mikołajczyk, M.: Data decomposition and decision rule joining for classification of data with missing values. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 299–320. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Mikołajczyk, M.: Reducing Number of Decision Rules by Joining. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 425–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. of Artif. Intell. Res. 2, 1–32 (1994)MATHGoogle Scholar
  13. 13.
    Pindur, R., Sasmuga, R., Stefanowski, J.: Hyperplane Aggregation of Dominance Decision Rules. Fundam. Inf. 61(2), 117–137 (2004)MATHGoogle Scholar
  14. 14.
    Raś, Z.W., Daradzińska, A., Liu, X.: System ADReD for discovering rules based on hyperplanes. Eng. App. of Artif. Intell. 17(4), 401–406 (2004)CrossRefGoogle Scholar
  15. 15.
    Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press (1996)Google Scholar
  16. 16.
    Sikora, M.: An algorithm for generalization of decision rules by joining. Found. on Comp. and Decis. Sci. 30(3), 227–239 (2005)MATHGoogle Scholar
  17. 17.
    Ślęzak, D., Wróblewski, J.: Classification Algorithms Based on Linear Combinations of Features. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 548–553. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcin Michalak
    • 1
  • Marek Sikora
    • 1
    • 2
  • Patryk Ziarnik
    • 1
  1. 1.Silesian University of TechnologyGliwicePoland
  2. 2.Institute of Innovative Technologies EMAGKatowicePoland

Personalised recommendations